Lecture 4: Signal Processing Review

Mark Hasegawa-Johnson

University of Illinois

ECE 417: Multimedia Signal Processing, Fall 2023

Four Fourier Transforms

Impulses

Rectangles

Filtering and Windowing

Conclusion

Outline

Four Fourier Transforms

Impulses

Rectangles

Filtering and Windowing

Conclusion

Four Fourier Transforms

1. CTFS: Periodic in time, Discrete in frequency
2. CTFT: Periodic in neither, Discrete in neither
3. DTFT: Discrete in time, Periodic in frequency
4. DFT: Discrete in both, Periodic in both

Continuous Time Fourier Series: Periodic in time, Discrete in frequency

Forward Transform:

$$
X_{k}=\frac{1}{T_{0}} \int_{t=0}^{T_{0}} x(t) e^{-j k \Omega_{0} t} d t, \quad \Omega_{0}=\frac{2 \pi}{T_{0}}
$$

Inverse Transform:

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{k} e^{j k \Omega_{0} t}
$$

Parseval's Theorem:

$$
\frac{1}{T_{0}} \int_{t=0}^{T_{0}}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|X_{k}\right|^{2}
$$

Continuous Time Fourier Transform: Periodic in neither, Discrete in neither

Forward Transform:

$$
X(\Omega)=\int_{-\infty}^{\infty} x(t) e^{-j \Omega t} d t
$$

Inverse Transform:

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\Omega) e^{j \Omega t} d \Omega
$$

Parseval's Theorem:

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\Omega)|^{2} d \Omega
$$

Discrete Time Fourier Transform: Discrete in time, Periodic in frequency

Forward Transform:

$$
X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

Inverse Transform:

$$
x[n]=\frac{1}{2 \pi} \int_{0}^{2 \pi} X(\omega) e^{j \omega n} d \omega
$$

Parseval's Theorem:

$$
\sum_{-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|X(\omega)|^{2} d \omega
$$

Discrete Fourier Transform: Discrete in both, Periodic in

 bothForward Transform:

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}
$$

Inverse Transform:

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi k n}{N}}
$$

Parseval's Theorem:

$$
\sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^{2}
$$

Outline

Four Fourier Transforms

Impulses

Rectangles

Filtering and Windowing

Conclusion

Discrete-Time Impulse

Definition:

$$
\delta\left[n-n_{0}\right]= \begin{cases}1 & n=n_{0} \\ 0 & \text { otherwise }\end{cases}
$$

Sampling Theorem:

$$
\sum_{n=-\infty}^{\infty} \delta\left[n-n_{0}\right] f[n]=f\left[n_{0}\right]
$$

DTFT of an Impulse:

$$
x[n]=\delta\left[n-n_{0}\right] \leftrightarrow X(\omega)=e^{-j \omega n_{0}}
$$

DFT of a Cosine:

$$
x[n]=\cos \left(\left(\frac{2 \pi a}{N}\right) n\right) \leftrightarrow X[k]=\frac{N}{2} \delta[k-a]+\frac{N}{2} \delta[k-(N-a)]
$$

Continuous-Time Impulse

Definition:

$$
\delta\left(t-t_{0}\right)= \begin{cases}\infty & t=t_{0} \\ 0 & \text { otherwise }\end{cases}
$$

Sampling Theorem:

$$
\int_{t=-\infty}^{\infty} \delta\left(t-t_{0}\right) f(t)=f\left(t_{0}\right)
$$

CTFT of an Impulse:

$$
x[n]=\delta\left(t-t_{0}\right) \leftrightarrow X(\Omega)=e^{-j \Omega t_{0}}
$$

CTFT of a Cosine:

$$
x(t)=\cos (\alpha t) \leftrightarrow X(\Omega)=\pi \delta(\Omega-\alpha)+\pi \delta(\Omega+\alpha)
$$

Outline

Four Fourier Transforms

Impulses

Rectangles

Filtering and Windowing

Conclusion

DTFT: Rectangle \leftrightarrow Sinc

- The DTFT of a sinc is a rectangle:

$$
h[n]=\left(\frac{\omega_{c}}{\pi}\right) \operatorname{sinc}\left(\omega_{c} n\right) \quad \leftrightarrow \quad H(\omega)= \begin{cases}1 & |\omega|<\omega_{c} \\ 0 & \omega_{c}<|\omega|<\pi\end{cases}
$$

- The DTFT of an even-symmetric rectangle is a sinc-like function, called the Dirichlet form:

$$
d_{L}[n]=\left\{\begin{array}{ll}
1 & |n| \leq \frac{L-1}{2} \\
0 & \text { otherwise }
\end{array} \quad \leftrightarrow \quad D_{L}(\omega)=\frac{\sin (\omega L / 2)}{\sin (\omega / 2)}\right.
$$

Rectangle \leftrightarrow Sinc

$h_{i}[n]$, omegac $=\pi / 4$

$W_{R}[n]$, length $=11$

$H_{i}(\omega)$, omegac $=\pi / 4$

Symmetric and Causal Rectangles

The causal rectangular window is:

$$
w_{R}[n]= \begin{cases}1 & 0 \leq n \leq L-1 \\ 0 & \text { otherwise }\end{cases}
$$

Its DTFT is:

$$
\begin{aligned}
W_{R}(\omega) & =\sum_{n=-\infty}^{\infty} w_{R}[n] e^{-j \omega n}=\sum_{n=0}^{L-1} e^{-j \omega n} \\
& =\frac{1-e^{-j \omega L}}{1-e^{-j \omega}} \\
& =\frac{\sin (\omega L / 2)}{\sin (\omega / 2)} e^{-j \omega\left(\frac{L-1}{2}\right)}
\end{aligned}
$$

It's just a delayed version of the symmetric rectangle:

$$
w_{R}[n]=d_{L}\left[n-\frac{L-1}{2}\right] \leftrightarrow W_{R}(\omega)=D_{L}(\omega) e^{-j \omega\left(\frac{L-1}{2}\right)}
$$

Properties of the Dirichlet form: Periodicity

$$
D_{L}(\omega)=\frac{\sin (\omega L / 2)}{\sin (\omega / 2)}
$$

Both numerator and denominator are periodic with period 2π.

Properties of the Dirichlet form: DC Value

$W_{R}(\omega)$ has a peak amplitude of L

$$
D_{L}(0)=\sum_{n=-\infty}^{\infty} w[n]=L
$$

Properties of the Dirichlet form: Sinc-like

$$
\begin{aligned}
D_{L}(\omega) & =\frac{\sin (\omega L / 2)}{\sin (\omega / 2)} \\
& \approx \frac{\sin (\omega L / 2)}{\omega / 2}
\end{aligned}
$$

Because, for small values of ω, $\sin \left(\frac{\omega}{2}\right) \approx \frac{\omega}{2}$.

Properties of the Dirichlet form: Nulls

$$
D_{L}(\omega)=\frac{\sin (\omega L / 2)}{\sin (\omega / 2)}
$$

It equals zero whenever

$$
\frac{\omega L}{2}=k \pi
$$

For any nonzero integer, k.

Properties of the Dirichlet form: Sidelobes

Its sidelobes are

$$
\begin{aligned}
& D_{L}\left(\frac{3 \pi}{L}\right)=\frac{-1}{\sin (3 \pi / 2 L)} \approx \frac{-2 L}{3 \pi} \\
& D_{L}\left(\frac{5 \pi}{L}\right)=\frac{1}{\sin (5 \pi / 2 L)} \approx \frac{2 L}{5 \pi} \\
& D_{L}\left(\frac{7 \pi}{L}\right)=\frac{-1}{\sin (7 \pi / 2 L)} \approx \frac{-2 L}{7 \pi}
\end{aligned}
$$

Properties of the Dirichlet form: Relative Sidelobe Amplitudes

The relative sidelobe amplitudes don't depend on L :

$$
\begin{aligned}
& \frac{D_{L}\left(\frac{3 \pi}{L}\right)}{D_{L}(0)}=\frac{-1}{L \sin (3 \pi / 2 L)} \approx \frac{-2}{3 \pi} \\
& \frac{D_{L}\left(\frac{5 \pi}{L}\right)}{D_{L}(0)}=\frac{1}{L \sin (5 \pi / 2 L)} \approx \frac{2}{5 \pi} \\
& \frac{D_{L}\left(\frac{7 \pi}{L}\right)}{D_{L}(0)}=\frac{-1}{L \sin (7 \pi / 2 L)} \approx \frac{-2}{7 \pi}
\end{aligned}
$$

Properties of the Dirichlet form: Decibels

We often describe the relative sidelobe amplitudes in decibels, which are defined as
$20 \log _{10}\left|\frac{D_{L}\left(\frac{3 \pi}{L}\right)}{W(0)}\right| \approx 20 \log _{10} \frac{2}{3 \pi} \approx-13 \mathrm{~dB}$
$20 \log _{10}\left|\frac{D_{L}\left(\frac{5 \pi}{L}\right)}{W(0)}\right| \approx 20 \log _{10} \frac{2}{5 \pi} \approx-18 \mathrm{~dB}$
$20 \log _{10}\left|\frac{D_{L}\left(\frac{7 \pi}{L}\right)}{W(0)}\right| \approx 20 \log _{10} \frac{2}{7 \pi} \approx-21 \mathrm{~dB}$

Outline

Four Fourier Transforms

Impulses

Rectangles

Filtering and Windowing

Conclusion

Filtering and Windowing

- Filtering: Convolution in time \leftrightarrow Multiplication in frequency
- Windowing: Multiplication in time \leftrightarrow Convolution in frequency

Filtering: Convolution in time \leftrightarrow Multiplication in frequency

$$
\begin{aligned}
Y(\omega)=H(\omega) X(\omega) \leftrightarrow y[n] & =h[n] * x[n] \\
& =\sum_{m} h[m] \times[n-m] \\
& =\sum_{m} h[n-m] \times[m]
\end{aligned}
$$

Windowing: Multiplication in time \leftrightarrow Convolution in frequency

$$
\begin{aligned}
y[n]=w[n] x[n] \leftrightarrow Y(\omega) & =\frac{1}{2 \pi} W(\omega) * X(\omega) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} W(\theta) X(\omega-\theta) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} W(\omega-\theta) X(\theta) d \theta
\end{aligned}
$$

Outline

Four Fourier Transforms

Impulses

Rectangles

Filtering and Windowing

Conclusion

Conclusion

1. Periodic in time \leftrightarrow Discrete in frequency
2. Discrete in time \leftrightarrow Periodic in frequency
3. Impulse in time \leftrightarrow Complex exponential in frequency
4. Complex exponential in time \leftrightarrow Impulse in frequency
5. Sinc in time \leftrightarrow Rectangle in frequency
6. Rectangle in time \leftrightarrow Sinc in frequency
