
Lecture 3: Barycentric Coordinates and Image
Interpolation

Mark Hasegawa-Johnson

University of Illinois

ECE 417: Multimedia Signal Processing, Fall 2023

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels:
Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Outline

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels:
Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Strategy

1. Use affine projection to rotate, scale, and shear the XRMB
points so that they match the shape of the MRI as well as
possible.

2. Draw triangles on the MRI so that every pixel is inside a
triangle.

3. Move the triangles.

4. Map each integer pixel in the target image to a real-valued
pixel in the original image

5. Use bilinear interpolation to find the color of the pixel

Step 1 (Last time): Use affine projection to map XRMB to
MRI

Steps 2 and 3: Draw triangles, then move them

Steps 4 and 5: Find the color of each pixel

Outline

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels:
Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Triangulation

A triangulation of a set of points = a
set of triangles, connecting those
points, that covers the convex hull of
those points.
There are many very cool algorithms
that will automatically triangulate a set
of points.

CC-BY-4.0 TheMathCat

https://commons.wikimedia.org/wiki/File:PointSetTriangulations.svg

Triangulation for the machine problem is provided for you

Once you have drawn the triangles, they move along with
the points

Outline

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels:
Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Source image

The source image is divided into
non-overlapping triangles, Xk .

Target image

In the target image, those triangles
have moved to new locations, Yk .

Problem Statement: Moving pixels

I The size of the image we want to construct is m × n.

I Consider a particular augmented target pixel, y =

 y1
y2
1

,

where 0 ≤ y1 ≤ m − 1 and 0 ≤ y2 ≤ n − 1 are both integers.

I In order to find the color of target pixel y , we want to find out
which source pixel, x , was moved to that location. Assume
that pixels only move around – they don’t change color while
they move.

Problem Statement: Piece-wise affine transform

I Suppose that y ∈ Yk , the kth target triangle.

I We know therefore that x ∈ Xk . But there are lots of pixels
inside Xk . Which one is it?

I Let’s assume that, within each triangle, the pixels move
according to an affine transform. In other words, if y ∈ Yk ,
and if we already knew Ak , then we could find x by solving:

y = Akx

where

y =

 y1
y2
1

 , x =

 x1
x2
1

 , Ak =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

0 0 1

Piece-wise affine transform

target point: y =

 y1
y2
1

 , source point: x =

 x1
x2
1

Definition: if y is in the kth triangle in the output image, then
we want to use the kth affine transform:

y = Akx , x = A−1
k y

If it is known that x = A−1
k y for some unknown affine transform

matrix Ak ,

then

the method of barycentric coordinates finds x

without ever finding Ak .

Barycentric Coordinates

Barycentric coordinates turns the
problem on its head. Suppose y is in a
triangle with corners at y1, y2, and y3.
That means that

y = β1y1 + β2y2 + β3y3

where
0 ≤ β1, β2, β3 ≤ 1

and
β1 + β2 + β3 = 1

Barycentric Coordinates

Suppose that all three of the corners are transformed by some
affine transform A, thus

x1 = Ay1, x2 = Ay2, x3 = Ay3

Then if
If: y = β1y1 + β2y2 + β3y3

Then:

x = Ay

= β1Ay1 + β2Ay2 + β3Ay3

= β1x1 + β2x2 + β3x3

In other words, once we know β, we no longer need to find A. We
only need to know where the corners of the triangle have moved.

Barycentric Coordinates

If
y = β1y1 + β2y2 + β3y3

Then

x = β1x1 + β2x2 + β3x3

How to find Barycentric Coordinates

But how do you find β1, β2, and β3? y1
y2
1

 = β1y1 + β2y2 + β3y3 =

 y1,1 y1,2 y1,3
y2,1 y2,2 y2,3

1 1 1

 β1
β2
β3

Write this as:

y = Y β

Therefore
β = Y−1y

This always works: the matrix Y is always invertible, unless all
three of the points y1, y2, and y3 are on a straight line.

How do you find out which triangle the point is in?

I Suppose we have K different triangles, each of which is
characterized by a 3× 3 matrix of its corners

Yk =
[
y
(k)
1 , y

(k)
2 , y

(k)
3

]
where y

(k)
m is the mth corner of the kth triangle.

I Notice that, for any point y , for ANY triangle Yk , we can find

β = Y−1
k y

I However, the coefficients β1, β2, and β3 will all be between 0
and 1 if and only if the point y is inside the triangle Yk .
Otherwise, some of the elements of β must be negative.

The Method of Barycentric Coordinates

To construct the animated output image frame J[y2, y1], we do the
following things:

I First, for each of the reference triangles Xk in the input image
I (x2, x1), decide where that triangle should move to. Call the
new triangle location Yk .

I Second, for each integer output pixel (y1, y2):
I For each of the triangles, find β = Y−1

k y .
I Choose the triangle for which all of the elements of β are

0 ≤ βm ≤ 1.
I Find x = Xkβ.
I Find the color of pixel I (x2, x1) in the input image.
I Set J[y2, y1] = I (x2, x1).

Outline

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels:
Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Integer Target Points

Now let’s suppose that you’ve figured out the coordinate
transform: for any given J[y2, y1], you’ve figured out which pixel
should be used to create it (J[y2, y1] = I (x2, x1)).

x = Xkβ = XkY
−1
k y

The Problem: Non-Integer Input Points

If [y2, y1] are integers, then usually, (x2, x1) are not integers.

Image Interpolation

It is necessary to find I (v , u) at non-integer values of (v , u) by
interpolating between the integer-valued pixels provided in the
image file.
Given the pixels of I [n,m] at integer values of m and n, we can
interpolate using an interpolation kernel h(v , u):

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

Piece-Wise Constant Interpolation

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m) (1)

For example, suppose

h(v , u) =

{
1 0 ≤ u < 1, 0 ≤ v < 1
0 otherwise

Then Eq. (1) is the same as just truncating u and v to the
next-lower integer, and outputting that number:

I (v , u) = I [bvc, buc]

where buc means “the largest integer smaller than u”.

Example: Original Image

For example, let’s downsample this image, and then try to recover
it by image interpolation:

Example: Downsampled Image

Here’s the downsampled image:

Example: Upsampled Image

Here it is after we upsample it back to the original resolution
(insert 3 zeros between every pair of nonzero columns):

Example: PWC Interpolation

Here is the piece-wise constant interpolated image:

Bi-Linear Interpolation

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

For example, suppose

h(v , u) = max (0, (1− |u|)(1− |v |))

Then Eq. (1) is the same as piece-wise linear interpolation among
the four nearest pixels. This is called bilinear interpolation
because it’s linear in two directions.

m = buc, e = u −m

n = bvc, f = v −m

I (v , u) = (1− e)(1− f)I [n,m] + (1− e)fI [n,m + 1]

+ e(1− f)I [n + 1,m] + efI [n + 1,m + 1]

Example: Upsampled Image

Here’s the upsampled image again:

Example: Bilinear Interpolation

Here it is after bilinear interpolation:

PWC and PWL Interpolator Kernels

Bilinear interpolation uses a PWL interpolation kernel, which does
not have the abrupt discontiuity of the PWC interpolator kernel.

Sinc Interpolation

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

For example, suppose

h(v , u) = sinc(πu)sinc(πv)

Then Eq. (1) is an ideal band-limited sinc interpolation. It
guarantees that the continuous-space image, I (v , u), is exactly a
band-limited D/A reconstruction of the digital image I [n,m].

Sinc Interpolation

Here is the cat after sinc interpolation:

Summary of interpolation methods

I PWC interpolation results in a blocky image

I Sinc interpolation results in a smooth image, and would be
perfect if the input image was infinite in size, but since
real-world images have edges, the sinc interpolation produces
ripple artifacts

I Bilinear interpolation is a very efficient solution with good
results

I Better results are available using deep-learning-based
super-resolution neural nets, but only after the neural net has
been trained for a few weeks!

Outline

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels:
Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Strategy

1. Use MMSE affine projection to rotate, scale, and shear the
XRMB points so that they match the shape of the MRI as
well as possible.

2. Draw triangles on the MRI so that every pixel is inside a
triangle.

3. Move the triangles.

4. Map each integer pixel in the target image to a real-valued
pixel in the original image using barycentric coordinates

5. Use bilinear interpolation to find the color of the pixel

	Application: Animating a still image
	Steps 2 and 3: Draw and Move Triangles
	Step 4: Find the mapping between original and moved pixels: Barycentric coordinates
	Step 5: Find the color of the source pixel: Bilinear interpolation
	Conclusion

	4.Plus:
	4.Reset:
	4.Minus:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

