Lecture 3: Barycentric Coordinates and Image Interpolation

Mark Hasegawa-Johnson

University of Illinois
ECE 417: Multimedia Signal Processing, Fall 2023

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels: Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Outline

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels: Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Strategy

1. Use affine projection to rotate, scale, and shear the $X R M B$ points so that they match the shape of the MRI as well as possible.
2. Draw triangles on the MRI so that every pixel is inside a triangle.
3. Move the triangles.
4. Map each integer pixel in the target image to a real-valued pixel in the original image
5. Use bilinear interpolation to find the color of the pixel

Step 1 (Last time): Use affine projection to map XRMB to MRI

Steps 2 and 3: Draw triangles, then move them

Steps 4 and 5: Find the color of each pixel

Outline

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels: Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Triangulation

A triangulation of a set of points $=a$ set of triangles, connecting those points, that covers the convex hull of those points.
There are many very cool algorithms that will automatically triangulate a set of points.

CC-BY-4.0 TheMathCat

Triangulation for the machine problem is provided for you

Once you have drawn the triangles, they move along with the points

Outline

> Application: Animating a still image

> Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels: Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Source image
The source image is divided into non-overlapping triangles, X_{k}.

Target image

In the target image, those triangles have moved to new locations, Y_{k}.

Problem Statement: Moving pixels

- The size of the image we want to construct is $m \times n$.
- Consider a particular augmented target pixel, $y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ 1\end{array}\right]$, where $0 \leq y_{1} \leq m-1$ and $0 \leq y_{2} \leq n-1$ are both integers.
- In order to find the color of target pixel y, we want to find out which source pixel, x, was moved to that location. Assume that pixels only move around - they don't change color while they move.

Problem Statement: Piece-wise affine transform

- Suppose that $y \in Y_{k}$, the $k^{\text {th }}$ target triangle.
- We know therefore that $x \in X_{k}$. But there are lots of pixels inside X_{k}. Which one is it?
- Let's assume that, within each triangle, the pixels move according to an affine transform. In other words, if $y \in Y_{k}$, and if we already knew A_{k}, then we could find x by solving:

$$
y=A_{k} x
$$

where

$$
y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
1
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right], \quad A_{k}=\left[\begin{array}{ccc}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
0 & 0 & 1
\end{array}\right]
$$

Piece-wise affine transform

$$
\text { target point: } y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
1
\end{array}\right], \quad \text { source point: } x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right]
$$

Definition: if y is in the $k^{\text {th }}$ triangle in the output image, then we want to use the $k^{\text {th }}$ affine transform:

$$
y=A_{k} x, \quad x=A_{k}^{-1} y
$$

If it is known that $x=A_{k}^{-1} y$ for some unknown affine transform matrix A_{k},
then
the method of barycentric coordinates finds x without ever finding A_{k}.

Barycentric Coordinates

Barycentric coordinates turns the problem on its head. Suppose y is in a triangle with corners at y_{1}, y_{2}, and y_{3}. That means that

$$
y=\beta_{1} y_{1}+\beta_{2} y_{2}+\beta_{3} y_{3}
$$

where

$$
0 \leq \beta_{1}, \beta_{2}, \beta_{3} \leq 1
$$

and

$$
\beta_{1}+\beta_{2}+\beta_{3}=1
$$

Barycentric Coordinates

Suppose that all three of the corners are transformed by some affine transform A, thus

$$
x_{1}=A y_{1}, \quad x_{2}=A y_{2}, \quad x_{3}=A y_{3}
$$

Then if

$$
\text { If: } y=\beta_{1} y_{1}+\beta_{2} y_{2}+\beta_{3} y_{3}
$$

Then:

$$
\begin{aligned}
x & =A y \\
& =\beta_{1} A y_{1}+\beta_{2} A y_{2}+\beta_{3} A y_{3} \\
& =\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}
\end{aligned}
$$

In other words, once we know β, we no longer need to find A. We only need to know where the corners of the triangle have moved.

Barycentric Coordinates

If

$$
y=\beta_{1} y_{1}+\beta_{2} y_{2}+\beta_{3} y_{3}
$$

Then

$$
x=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}
$$

How to find Barycentric Coordinates

But how do you find β_{1}, β_{2}, and β_{3} ?

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
1
\end{array}\right]=\beta_{1} y_{1}+\beta_{2} y_{2}+\beta_{3} y_{3}=\left[\begin{array}{ccc}
y_{1,1} & y_{1,2} & y_{1,3} \\
y_{2,1} & y_{2,2} & y_{2,3} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]
$$

Write this as:

$$
y=Y \beta
$$

Therefore

$$
\beta=Y^{-1} y
$$

This always works: the matrix Y is always invertible, unless all three of the points y_{1}, y_{2}, and y_{3} are on a straight line.

How do you find out which triangle the point is in?

- Suppose we have K different triangles, each of which is characterized by a 3×3 matrix of its corners

$$
Y_{k}=\left[y_{1}^{(k)}, y_{2}^{(k)}, y_{3}^{(k)}\right]
$$

where $y_{m}^{(k)}$ is the $m^{\text {th }}$ corner of the $k^{\text {th }}$ triangle.

- Notice that, for any point y, for ANY triangle Y_{k}, we can find

$$
\beta=Y_{k}^{-1} y
$$

- However, the coefficients β_{1}, β_{2}, and β_{3} will all be between 0 and 1 if and only if the point y is inside the triangle Y_{k}. Otherwise, some of the elements of β must be negative.

The Method of Barycentric Coordinates

To construct the animated output image frame $J\left[y_{2}, y_{1}\right]$, we do the following things:

- First, for each of the reference triangles X_{k} in the input image $I\left(x_{2}, x_{1}\right)$, decide where that triangle should move to. Call the new triangle location Y_{k}.
- Second, for each integer output pixel $\left(y_{1}, y_{2}\right)$:
- For each of the triangles, find $\beta=Y_{k}^{-1} y$.
- Choose the triangle for which all of the elements of β are $0 \leq \beta_{m} \leq 1$.
- Find $x=X_{k} \beta$.
- Find the color of pixel $I\left(x_{2}, x_{1}\right)$ in the input image.
- Set $J\left[y_{2}, y_{1}\right]=I\left(x_{2}, x_{1}\right)$.

Outline

> Application: Animating a still image

> Steps 2 and 3: Draw and Move Triangles

> Step 4: Find the mapping between original and moved pixels: Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Integer Target Points
Now let's suppose that you've figured out the coordinate transform: for any given $J\left[y_{2}, y_{1}\right]$, you've figured out which pixel should be used to create it $\left(J\left[y_{2}, y_{1}\right]=I\left(x_{2}, x_{1}\right)\right)$.

$$
x=X_{k} \beta=X_{k} Y_{k}^{-1} y
$$

The Problem: Non-Integer Input Points
If $\left[y_{2}, y_{1}\right]$ are integers, then usually, $\left(x_{2}, x_{1}\right)$ are not integers.

Image Interpolation

It is necessary to find $I(v, u)$ at non-integer values of (v, u) by interpolating between the integer-valued pixels provided in the image file.
Given the pixels of $I[n, m]$ at integer values of m and n, we can interpolate using an interpolation kernel $h(v, u)$:

$$
I(v, u)=\sum_{m} \sum_{n} I[n, m] h(v-n, u-m)
$$

Piece-Wise Constant Interpolation

$$
\begin{equation*}
I(v, u)=\sum_{m} \sum_{n} I[n, m] h(v-n, u-m) \tag{1}
\end{equation*}
$$

For example, suppose

$$
h(v, u)= \begin{cases}1 & 0 \leq u<1, \quad 0 \leq v<1 \\ 0 & \text { otherwise }\end{cases}
$$

Then Eq. (1) is the same as just truncating u and v to the next-lower integer, and outputting that number:

$$
I(v, u)=I[\lfloor v\rfloor,\lfloor u\rfloor]
$$

where $\lfloor u\rfloor$ means "the largest integer smaller than u ".

Example: Original Image

For example, let's downsample this image, and then try to recover it by image interpolation:

Example: Downsampled Image

Here's the downsampled image:

Example: Upsampled Image

Here it is after we upsample it back to the original resolution (insert 3 zeros between every pair of nonzero columns):

Example: PWC Interpolation

Here is the piece-wise constant interpolated image:

Bi-Linear Interpolation

$$
I(v, u)=\sum_{m} \sum_{n} I[n, m] h(v-n, u-m)
$$

For example, suppose

$$
h(v, u)=\max (0,(1-|u|)(1-|v|))
$$

Then Eq. (1) is the same as piece-wise linear interpolation among the four nearest pixels. This is called bilinear interpolation because it's linear in two directions.

$$
\begin{aligned}
m & =\lfloor u\rfloor, \quad e=u-m \\
n & =\lfloor v\rfloor, \quad f=v-m \\
I(v, u) & =(1-e)(1-f) I[n, m]+(1-e) f l[n, m+1] \\
& +e(1-f) I[n+1, m]+e f l[n+1, m+1]
\end{aligned}
$$

Example: Upsampled Image

Here's the upsampled image again:

Example: Bilinear Interpolation

Here it is after bilinear interpolation:

PWC and PWL Interpolator Kernels

Bilinear interpolation uses a PWL interpolation kernel, which does not have the abrupt discontiuity of the PWC interpolator kernel.

Sinc Interpolation

$$
I(v, u)=\sum_{m} \sum_{n} I[n, m] h(v-n, u-m)
$$

For example, suppose

$$
h(v, u)=\operatorname{sinc}(\pi u) \operatorname{sinc}(\pi v)
$$

Then Eq. (1) is an ideal band-limited sinc interpolation. It guarantees that the continuous-space image, $I(v, u)$, is exactly a band-limited D / A reconstruction of the digital image $I[n, m]$.

Sinc Interpolation

Here is the cat after sinc interpolation:

Summary of interpolation methods

- PWC interpolation results in a blocky image
- Sinc interpolation results in a smooth image, and would be perfect if the input image was infinite in size, but since real-world images have edges, the sinc interpolation produces ripple artifacts
- Bilinear interpolation is a very efficient solution with good results
- Better results are available using deep-learning-based super-resolution neural nets, but only after the neural net has been trained for a few weeks!

Outline

Application: Animating a still image

Steps 2 and 3: Draw and Move Triangles

Step 4: Find the mapping between original and moved pixels:
Barycentric coordinates

Step 5: Find the color of the source pixel: Bilinear interpolation

Conclusion

Strategy

1. Use MMSE affine projection to rotate, scale, and shear the XRMB points so that they match the shape of the MRI as well as possible.
2. Draw triangles on the MRI so that every pixel is inside a triangle.
3. Move the triangles.
4. Map each integer pixel in the target image to a real-valued pixel in the original image using barycentric coordinates
5. Use bilinear interpolation to find the color of the pixel
