Lecture 2: SVD, Pseudo-Inverse, and Projection

Mark Hasegawa-Johnson
These slides are in the public domain.

University of lllinois

ECE 417: Multimedia Signal Processing, Fall 2023

Application: Animating a still image

Singular Value Decomposition

Pseudo-Inverse

Affine Transformations

MMSE Estimation of an Affine Transform

Conclusions

Outline

Application: Animating a still image

Input #1: X-Ray Microbeam Data

20000

15000
10000
5000 + . .
0
—5000 4
-10000 A

.
-15000 A

-20000 T T T T T
—80000 -60000 -—40000 -20000 0 20000

(=)bM+]

Input #2: A Still Image Acquired Using MRI

Desired Output: Animated Image

0 25 50 75 100 125 150 175 200

(=)bM+]

Strategy

1. Use affine projection to rotate, scale, and shear the XRMB
points so that they match the shape of the MRI as well as
possible.

2. Draw triangles on the MRI so that every pixel is inside a
triangle.

3. Move the triangles.

Step 1 (Today): Use affine projection to map XRMB to
MRI

0 25 50 75 100 125 150 175 200

(=)bM+]

Step 2 (Next time): Draw triangles on the MRI

254

50 4

75 4

100

125 4

150

175 A

200 -

T T T T T T T T
0 25 50 75 100 125 150 175 200

(=)bM+]

Outline

Singular Value Decomposition

Summary: Purpose of this section

Any real-valued matrix of any dimension, M € R™*", can be
written as
M=UzvT

...where ¥ is a diagonal matrix, and U and V are orthonormal
matrices.

Proof Step #1: Eigenvectors of a Gram Matrix

The gram matrix, G = MTM e R is the matrix whose
elements are inner products between the columns of M. G is
square, symmetric, and positive-semidefinite, therefore

G = VAVT, where

M 0 -~ 0

0 X --- 0
V=1[v,...,vn], A= . .

: : .0

» The rows and columns of V are orthonormal,
wl=vTv=|
>)\; > 0 are the eigenvalues of G

Proof Step #2: Singular Values

The eigenvalues are non-negative, so we can take their square

roots:
y — /\1/2
o1 0 0
0 oo 0
B : 0
0 0 On

where o; = ;. Therefore, we can write

G=VAVT =vIyv’

Proof Step #3: the Sum-of-Squares Matrix

The sum-of-squares matrix, S = MMT € R™*™ is the matrix
whose elements are inner products between the rows of M. S is
square, symmetric, and positive-semidefinite, therefore S = UANUT,

where
A 0 0
0 X 0
U=lui,...,um], A= ,)
: : .0
0 0 - Am

» The eigenvalues of S are the same as the eigenvalues of G,
except that if m > n, the extra eigenvalues are all zero:
App1 == Am=0.

» The rows and columns of U are orthonormal,
uur =uTu =1

Proof Step #4: Replace [by UTU

Starting with G = VSSV'T, we can introduce an identity matrix
into the middle to get

G=ViizvT =vzuTuzv’
But by the same logic, we can write
S=UzizuT =UuzvTvzuT
The only way these can both be true is if the original matrix was

M=UzVvT"

Singular Value Decomposition

Any real matrix M € R™*" can be

decomposed as

M= uzvT M=U > V

mxn mxm mxn Nxn

U U* - Im

vV Vo= |,

CC-SA 4.0, Cmglee

https://en.wikipedia.org/wiki/Singular_value_decomposition

Outline

Pseudo-Inverse

Summary: Purpose of this section

Any arbitrary real matrix M = UZV T € R™*" has a
pseudo-inverse, defined as

M= Uz TV

where U,, X, and V, are the “compact singular value
decomposition” of M, defined as:

» ¥, € R™*" contains only the nonzero singular values,
» U, € R™*" contains the corresponding columns of U,

» V, € R™" contains the corresponding columns of V.

Why it makes sense: Eigenvalue definition of matrix inverse

First, suppose that G is a square positive-definite matrix, i.e., all of
its eigenvalues are greater than zero. Then we can write G-inverse
as

G l=vAlvT
Proof:
G716 = (V/\—lvT) <V/\VT)
= VAIAVT

=wT
=

Algebraic Forms

» If m < nand M has full row rank (all rows linearly
independent), then MMT € R™*™ is invertible, and

Mt =MT(MMT)~1

» If m > n and M has full column rank (all columns linearly
independent), then MTM e R"™" is invertible, and

M' = (MTMY"TmT

The homework will explore the properties of these two very useful
special cases.

Proof that the Algebraic Forms are Pseudo-Inverse

Suppose that M = U, L, V,", and MT = U, X1V . Then

MT(MMTYt = v, U7 (U, V,V,Z,ul)1
=V, Z, Ul (Ux, Ut
= VT, U/ (UAUT)
=V, uTuntu’
= V, T, ATUT
= v,z tu]
- Mt

Outline

Affine Transformations

Affine Transformation

: . . . X .
Given an input pixel location x = xl] € N2, the goal is to
2
rotate, scale, shift and shear the image to find an output pixel
: u
location u = L en2
u2

An affine transform is a linear transform plus a shift:

up | _ | a1 a2 x| by
up a1 a2 X2 bo
...or we could just write. ..

u=Ax+0b

Affine Transforms

Notice that the affine transformation has 6 degrees of freedom:
(ai,1,a12,a21,a22, b1, bo). Therefore, you can accmplish 6
different types of transformation:

» Shift the image left<>right (using b;)

» Shift the image up<«+down (using by)

» Scale the image horizontally (using a1 1)

» Scale the image vertically (using a2)

> Rotate the image (using a1,1,a1,2,a2,1,a22)
» Shear the image horizontally (using aj »)

Vertical shear (using ap 1) is a combination of horizontal shear +
rotation.

Example: Reflection

i

CC-SA 4.0, https://en.wikipedia.org/wiki/Affine_transformation

u -1 00 X
v | = 0 10 y
0 01 1

https://en.wikipedia.org/wiki/Affine_transformation

Example: Scale

i

CC-SA 4.0, https://en.wikipedia.org/wiki/Affine_transformation

u 2 00 X
% 0 10 y
1 0 01 1

https://en.wikipedia.org/wiki/Affine_transformation

Example: Rotation

i

CC-SA 4.0, https://en.wikipedia.org/wiki/Affine_transformation

u cos@ —sinf O X
v |=] sinf cosf O y
1 0 0 1 1

https://en.wikipedia.org/wiki/Affine_transformation

Example: Shear

i

CC-SA 4.0, https://en.wikipedia.org/wiki/Affine_transformation

u 1 05 0 X
vi=[0 1 0 y
1 0 0 1 1

https://en.wikipedia.org/wiki/Affine_transformation

Outline

MMSE Estimation of an Affine Transform

Input
Suppose we have a set of points like
this:

20000

-
.
15000 {* Gt P
h -
10000
‘('
5000 A . .
0]

~5000

10000 -
.
-15000 - .
20000 : . ‘ ‘ ,
~80000 60000 —40000 —20000 O 20000

(=Jbe(+)

Output

...we want to rotate, reflect, shift
and scale so it looks like this:

0 25 50 75 100 125 150 175 200

(=) (+)

Estimating an Affine Transform

Our goal is to find a 3 x 2 affine transform matrix, A, such that
Y ~ XA

where x; = [x; 1, xi2,1] is a 1-augmented X-ray microbeam

landmark point, y; = [y,-yl,y,;z] is the corresponding MRI landmark
point, and

Y11 Y21 x11 xo1 1
: : , X = : S A=

)

a1 a2
a1 ap
Yn1 Yn1 Xn,1 Xn,1 1 by by

MMSE Estimation of Affine Transform

In particular, suppose we want to minimize the mean-squared error:

n

=3 IxA -yl = S (A -) (A -)T
i=1

i=1

Notice that this is just squaring the samples of XA — Y/, and
adding across the rows. That's called the “Frobenius norm” of
XA —Y, and there a few different ways it can be expanded:

= |XA- Y2
= trace ((XA —Y)(XA— Y)T>

— trace ((XA —Y)T(XA - Y))

MMSE Estimation of Affine Transform

Since MMSE is quadratic, we can find the minimum by just
differentiating with respect to the elements of the matrix.
Differentiating is easy if we choose the version of ¢, from the
previous slide, that puts A on the outside:

de de
de _ | %Lt 9o
d7A = dgil dzi2
dby dby
d
~ —trace (ATXTXA _YTXA—ATXTY + YTY)

=ATXTX +(XTXA)T —(XTY)T —YTX

Setting that to zero and re-arranging gives X" XA = XTY, and

therefore
Aumse = (XTX)IXTy = XTy

MMSE Estimation of Affine Transform

In case you don't like matrix differentiations, here is the derivative
from the previous slide done element-by-element:

2
e=|XA-Y|E = ZZ (ZX/ kdkj — yu)

i=1 j=1 \k=1

_zzm:i ZX ; 03 iy Xik
aapq — ikdkj — Yij 8ap,q

i=1 j=1

—22 (lekakq)/:,q) Xi.p
i=1 =

If we stack up the last line into a matrix where p is the row
number and g is the column number, we get

de

=2XTXA—-2XTYy
dA

Interpretation of MMSE as Projection

Pay attention to what's happening here.
AMMSE = (XTX)_IXTY, where

X11 X1t Xni Y1)21
X'y = X12 X22 0 Xn2 : :
1 1 o 1 Yn1 Yn1

So Ammse projects each column of Y onto the columns of X, then
normalizes by (X7 X)™L.

Interpreting MMSE as Projection

If X is tall and thin, columns of Y are
projected onto columns of X as

If X is short and fat, columns of Y are
projected onto rows of X as

Y =XT(XXT)"1xy
= XXy

Outline

Conclusions

Conclusions

» Singular value decomposition:
M=UzvT =U,x, VS
» Pseudo-inverse:

M= Uzt
= (MTM)"IMT if M tall & thin
= MT(MMT)~1 if M short & fat

» MMSE Projection:

Aumse = (XTX)IXTY

	Application: Animating a still image
	Singular Value Decomposition
	Pseudo-Inverse
	Affine Transformations
	MMSE Estimation of an Affine Transform
	Conclusions

	5.Plus:
	5.Reset:
	5.Minus:
	5.EndRight:
	5.StepRight:
	5.PlayPauseRight:
	5.PlayRight:
	5.PauseRight:
	5.PlayPauseLeft:
	5.PlayLeft:
	5.PauseLeft:
	5.StepLeft:
	5.EndLeft:
	anm5:
	5.42:
	5.41:
	5.40:
	5.39:
	5.38:
	5.37:
	5.36:
	5.35:
	5.34:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	4.Plus:
	4.Reset:
	4.Minus:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

