
Lecture 2: SVD, Pseudo-Inverse, and Projection

Mark Hasegawa-Johnson
These slides are in the public domain.

University of Illinois

ECE 417: Multimedia Signal Processing, Fall 2023



Application: Animating a still image

Singular Value Decomposition

Pseudo-Inverse

Affine Transformations

MMSE Estimation of an Affine Transform

Conclusions



Outline

Application: Animating a still image

Singular Value Decomposition

Pseudo-Inverse

Affine Transformations

MMSE Estimation of an Affine Transform

Conclusions



Input #1: X-Ray Microbeam Data



Input #2: A Still Image Acquired Using MRI



Desired Output: Animated Image



Strategy

1. Use affine projection to rotate, scale, and shear the XRMB
points so that they match the shape of the MRI as well as
possible.

2. Draw triangles on the MRI so that every pixel is inside a
triangle.

3. Move the triangles.



Step 1 (Today): Use affine projection to map XRMB to
MRI



Step 2 (Next time): Draw triangles on the MRI



Outline

Application: Animating a still image

Singular Value Decomposition

Pseudo-Inverse

Affine Transformations

MMSE Estimation of an Affine Transform

Conclusions



Summary: Purpose of this section

Any real-valued matrix of any dimension, M ∈ <m×n, can be
written as

M = UΣV T

. . . where Σ is a diagonal matrix, and U and V are orthonormal
matrices.



Proof Step #1: Eigenvectors of a Gram Matrix

The gram matrix, G = MTM ∈ <n×n, is the matrix whose
elements are inner products between the columns of M. G is
square, symmetric, and positive-semidefinite, therefore
G = VΛV T , where

V = [v1, . . . , vn] , Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn


I The rows and columns of V are orthonormal,

VV T = V TV = I

I λi ≥ 0 are the eigenvalues of G



Proof Step #2: Singular Values

The eigenvalues are non-negative, so we can take their square
roots:

Σ = Λ1/2

=


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . . 0

0 0 · · · σn


where σi =

√
λi . Therefore, we can write

G = VΛV T = VΣΣV T



Proof Step #3: the Sum-of-Squares Matrix

The sum-of-squares matrix, S = MMT ∈ <m×m, is the matrix
whose elements are inner products between the rows of M. S is
square, symmetric, and positive-semidefinite, therefore S = UΛUT ,
where

U = [u1, . . . , um] , Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λm


I The eigenvalues of S are the same as the eigenvalues of G ,

except that if m > n, the extra eigenvalues are all zero:
λn+1 = · · · = λm = 0.

I The rows and columns of U are orthonormal,
UUT = UTU = I



Proof Step #4: Replace I by UTU

Starting with G = VSSV T , we can introduce an identity matrix
into the middle to get

G = VΣIΣV T = VΣUTUΣV T

But by the same logic, we can write

S = UΣIΣUT = UΣV TVΣUT

The only way these can both be true is if the original matrix was

M = UΣV T



Singular Value Decomposition

Any real matrix M ∈ <m×n can be
decomposed as

M = UΣV T

CC-SA 4.0, Cmglee

https://en.wikipedia.org/wiki/Singular_value_decomposition


Outline

Application: Animating a still image

Singular Value Decomposition

Pseudo-Inverse

Affine Transformations

MMSE Estimation of an Affine Transform

Conclusions



Summary: Purpose of this section

Any arbitrary real matrix M = UΣV T ∈ <m×n has a
pseudo-inverse, defined as

M† = UrΣ−1r V T
r

where Ur , Σr , and Vr are the “compact singular value
decomposition” of M, defined as:

I Σr ∈ <r×r contains only the nonzero singular values,

I Ur ∈ <m×r contains the corresponding columns of U,

I Vr ∈ <n×r contains the corresponding columns of V .



Why it makes sense: Eigenvalue definition of matrix inverse

First, suppose that G is a square positive-definite matrix, i.e., all of
its eigenvalues are greater than zero. Then we can write G -inverse
as

G−1 = VΛ−1V T

Proof:

G−1G =
(
VΛ−1V T

)(
VΛV T

)
= VΛ−1ΛV T

= VV T

= I



Algebraic Forms

I If m < n and M has full row rank (all rows linearly
independent), then MMT ∈ <m×m is invertible, and

M† = MT (MMT )−1

I If m > n and M has full column rank (all columns linearly
independent), then MTM ∈ <n×n is invertible, and

M† = (MTM)−1MT

The homework will explore the properties of these two very useful
special cases.



Proof that the Algebraic Forms are Pseudo-Inverse

Suppose that M = UrΣrV
T
r , and M† = UrΣ−1r V T

r . Then

MT (MMT )−1 = VrΣrU
T
r (UrΣrV

T
r VrΣrU

T
r )−1

= VrΣrU
T
r (UrΣrΣrU

T
r )−1

= VrΣrU
T
r (UrΛrU

T
r )−1

= VrΣrU
T
r UrΛ−1r UT

r

= VrΣrΛ−1r UT
r

= VrΣ−1r UT
r

= M†



Outline

Application: Animating a still image

Singular Value Decomposition

Pseudo-Inverse

Affine Transformations

MMSE Estimation of an Affine Transform

Conclusions



Affine Transformation

Given an input pixel location x =

[
x1
x2

]
∈ <2, the goal is to

rotate, scale, shift and shear the image to find an output pixel

location u =

[
u1
u2

]
∈ <2.

An affine transform is a linear transform plus a shift:[
u1
u2

]
=

[
a1,1 a1,2
a2,1 a2,2

] [
x1
x2

]
+

[
b1
b2

]
. . . or we could just write. . .

u = Ax + b



Affine Transforms

Notice that the affine transformation has 6 degrees of freedom:
(a1,1, a1,2, a2,1, a2,2, b1, b2). Therefore, you can accmplish 6
different types of transformation:

I Shift the image left↔right (using b1)

I Shift the image up↔down (using b2)

I Scale the image horizontally (using a1,1)

I Scale the image vertically (using a2,2)

I Rotate the image (using a1,1, a1,2, a2,1, a2,2)

I Shear the image horizontally (using a1,2)

Vertical shear (using a2,1) is a combination of horizontal shear +
rotation.



Example: Reflection

CC-SA 4.0, https://en.wikipedia.org/wiki/Affine_transformation u
v
1

 =

 −1 0 0
0 1 0
0 0 1

 x
y
1



https://en.wikipedia.org/wiki/Affine_transformation


Example: Scale

CC-SA 4.0, https://en.wikipedia.org/wiki/Affine_transformation u
v
1

 =

 2 0 0
0 1 0
0 0 1

 x
y
1



https://en.wikipedia.org/wiki/Affine_transformation


Example: Rotation

CC-SA 4.0, https://en.wikipedia.org/wiki/Affine_transformation u
v
1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1



https://en.wikipedia.org/wiki/Affine_transformation


Example: Shear

CC-SA 4.0, https://en.wikipedia.org/wiki/Affine_transformation u
v
1

 =

 1 0.5 0
0 1 0
0 0 1

 x
y
1



https://en.wikipedia.org/wiki/Affine_transformation


Outline

Application: Animating a still image

Singular Value Decomposition

Pseudo-Inverse

Affine Transformations

MMSE Estimation of an Affine Transform

Conclusions



Input

Suppose we have a set of points like
this:

Output

...we want to rotate, reflect, shift
and scale so it looks like this:



Estimating an Affine Transform

Our goal is to find a 3× 2 affine transform matrix, A, such that

Y ≈ XA

where xi = [xi ,1, xi ,2, 1] is a 1-augmented X-ray microbeam
landmark point, yi = [yi ,1, yi ,2] is the corresponding MRI landmark
point, and

Y =

 y1,1 y2,1
...

...
yn,1 yn,1

 , X =

 x1,1 x2,1 1
...

...
...

xn,1 xn,1 1

 , A =

 a1,1 a1,2
a2,1 a2,2
b1 b2





MMSE Estimation of Affine Transform

In particular, suppose we want to minimize the mean-squared error:

ε =
n∑

i=1

‖xiA− yi‖2 =
n∑

i=1

(xiA− yi )(xiA− yi )
T

Notice that this is just squaring the samples of XA− Y , and
adding across the rows. That’s called the “Frobenius norm” of
XA− Y , and there a few different ways it can be expanded:

ε = ‖XA− Y ‖2F
= trace

(
(XA− Y )(XA− Y )T

)
= trace

(
(XA− Y )T (XA− Y )

)



MMSE Estimation of Affine Transform

Since MMSE is quadratic, we can find the minimum by just
differentiating with respect to the elements of the matrix.
Differentiating is easy if we choose the version of ε, from the
previous slide, that puts A on the outside:

dε

dA
≡


dε

da1,1
dε

da1,2
dε

da2,1
dε

da2,2
dε
db1

dε
db2


=

d

dA
trace

(
ATXTXA− Y TXA− ATXTY + Y TY

)
= ATXTX + (XTXA)T − (XTY )T − Y TX

Setting that to zero and re-arranging gives XTXA = XTY , and
therefore

AMMSE = (XTX )−1XTY = X †Y



MMSE Estimation of Affine Transform
In case you don’t like matrix differentiations, here is the derivative
from the previous slide done element-by-element:

ε = ‖XA− Y ‖2F =
m∑
i=1

2∑
j=1

(
3∑

k=1

xi ,kak,j − yi ,j

)2

∂ε

∂ap,q
= 2

m∑
i=1

2∑
j=1

(
3∑

k=1

xi ,kak,j − yi ,j

)(
∂
∑3

k=1 xi ,kak,j
∂ap,q

)

= 2
m∑
i=1

(
3∑

k=1

xi ,kak,q − yi ,q

)
xi ,p

If we stack up the last line into a matrix where p is the row
number and q is the column number, we get

dε

dA
= 2XTXA− 2XTY



Interpretation of MMSE as Projection

Pay attention to what’s happening here.
AMMSE = (XTX )−1XTY , where

XTY =

 x1,1 x2,1 · · · xn,1
x1,2 x2,2 · · · xn,2

1 1 · · · 1


 y1,1 y2,1

...
...

yn,1 yn,1


So AMMSE projects each column of Y onto the columns of X , then
normalizes by (XTX )−1.



Interpreting MMSE as Projection

If X is tall and thin, columns of Y are
projected onto columns of X as

Ŷ = X (XTX )−1XTY

= XX †Y

If X is short and fat, columns of Y are
projected onto rows of X as

Ŷ = XT (XXT )−1XY

= X †XY



Outline

Application: Animating a still image

Singular Value Decomposition

Pseudo-Inverse

Affine Transformations

MMSE Estimation of an Affine Transform

Conclusions



Conclusions

I Singular value decomposition:

M = UΣV T = UrΣrV
T
r

I Pseudo-inverse:

M† = UrΣ−1r V T
r

= (MTM)−1MT if M tall & thin

= MT (MMT )−1 if M short & fat

I MMSE Projection:

AMMSE = (XTX )−1XTY


	Application: Animating a still image
	Singular Value Decomposition
	Pseudo-Inverse
	Affine Transformations
	MMSE Estimation of an Affine Transform
	Conclusions

	5.Plus: 
	5.Reset: 
	5.Minus: 
	5.EndRight: 
	5.StepRight: 
	5.PlayPauseRight: 
	5.PlayRight: 
	5.PauseRight: 
	5.PlayPauseLeft: 
	5.PlayLeft: 
	5.PauseLeft: 
	5.StepLeft: 
	5.EndLeft: 
	anm5: 
	5.42: 
	5.41: 
	5.40: 
	5.39: 
	5.38: 
	5.37: 
	5.36: 
	5.35: 
	5.34: 
	5.33: 
	5.32: 
	5.31: 
	5.30: 
	5.29: 
	5.28: 
	5.27: 
	5.26: 
	5.25: 
	5.24: 
	5.23: 
	5.22: 
	5.21: 
	5.20: 
	5.19: 
	5.18: 
	5.17: 
	5.16: 
	5.15: 
	5.14: 
	5.13: 
	5.12: 
	5.11: 
	5.10: 
	5.9: 
	5.8: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	4.Plus: 
	4.Reset: 
	4.Minus: 
	4.EndRight: 
	4.StepRight: 
	4.PlayPauseRight: 
	4.PlayRight: 
	4.PauseRight: 
	4.PlayPauseLeft: 
	4.PlayLeft: 
	4.PauseLeft: 
	4.StepLeft: 
	4.EndLeft: 
	anm4: 
	4.42: 
	4.41: 
	4.40: 
	4.39: 
	4.38: 
	4.37: 
	4.36: 
	4.35: 
	4.34: 
	4.33: 
	4.32: 
	4.31: 
	4.30: 
	4.29: 
	4.28: 
	4.27: 
	4.26: 
	4.25: 
	4.24: 
	4.23: 
	4.22: 
	4.21: 
	4.20: 
	4.19: 
	4.18: 
	4.17: 
	4.16: 
	4.15: 
	4.14: 
	4.13: 
	4.12: 
	4.11: 
	4.10: 
	4.9: 
	4.8: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	3.Plus: 
	3.Reset: 
	3.Minus: 
	3.EndRight: 
	3.StepRight: 
	3.PlayPauseRight: 
	3.PlayRight: 
	3.PauseRight: 
	3.PlayPauseLeft: 
	3.PlayLeft: 
	3.PauseLeft: 
	3.StepLeft: 
	3.EndLeft: 
	anm3: 
	3.42: 
	3.41: 
	3.40: 
	3.39: 
	3.38: 
	3.37: 
	3.36: 
	3.35: 
	3.34: 
	3.33: 
	3.32: 
	3.31: 
	3.30: 
	3.29: 
	3.28: 
	3.27: 
	3.26: 
	3.25: 
	3.24: 
	3.23: 
	3.22: 
	3.21: 
	3.20: 
	3.19: 
	3.18: 
	3.17: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	2.Plus: 
	2.Reset: 
	2.Minus: 
	2.EndRight: 
	2.StepRight: 
	2.PlayPauseRight: 
	2.PlayRight: 
	2.PauseRight: 
	2.PlayPauseLeft: 
	2.PlayLeft: 
	2.PauseLeft: 
	2.StepLeft: 
	2.EndLeft: 
	anm2: 
	2.42: 
	2.41: 
	2.40: 
	2.39: 
	2.38: 
	2.37: 
	2.36: 
	2.35: 
	2.34: 
	2.33: 
	2.32: 
	2.31: 
	2.30: 
	2.29: 
	2.28: 
	2.27: 
	2.26: 
	2.25: 
	2.24: 
	2.23: 
	2.22: 
	2.21: 
	2.20: 
	2.19: 
	2.18: 
	2.17: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


