Lecture 1: Review of Linear Algebra

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2023
(1) Intro to the Course
(2) Review: Linear Algebra

3 Left and Right Eigenvectors

4 Symmetric PSD Matrices
(5) Examples
(6) Summary

Outline

(1) Intro to the Course
(2) Review: Linear Algebra

3 Left and Right Eigenvectors

4 Symmetric PSD Matrices
(5) Examples
(6) Summary

Welcome to ECE 417, Multimedia Signal Processing!

- This course is about video and audio signals.
- At this point, let's talk about the web page: https: //courses.grainger.illinois.edu/ece417/fa2023/

CampusWire and GradeScope

- If you're not yet added to the CampusWire or GradeScope pages, please add yourself.
- The CampusWire link is https://campuswire.com/p/G4B80E16A, with code 8237.
- The GradeScope link is https://www.gradescope.com/courses/560497, with code K3EX68.

Outline

(1) Intro to the Course
(2) Review: Linear Algebra
(3) Left and Right Eigenvectors

4 Symmetric PSD Matrices
(5) Examples
(6) Summary

Reading: https:
//math.mit.edu/~gs/linearalgebra/ila6/ila6_6_1.pdf

A linear transform $y=A x$ maps vector space x onto vector space y. For example: the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ maps the vectors $x_{0}, x_{1}, x_{2}, x_{3}=$

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

to the vectors $y_{0}, y_{1}, y_{2}, y_{3}=$

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
\sqrt{2} \\
\sqrt{2}
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
\sqrt{2}
\end{array}\right]
$$

A linear transform $y=A x$ maps vector space x onto vector space y. The absolute value of the determinant of A tells you how much the area of a unit circle is changed under the transformation.
For example, if $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$, then the unit circle in x (which has an area of π) is mapped to an ellipse with an area that is $\operatorname{abs}(|A|)=2$ times larger, i.e., i.e., $\pi \operatorname{abs}(|A|)=2 \pi$.

For a d-dimensional square matrix, there may be up to d different directions $x=v_{i}$ such that, for some scalar $\lambda_{i}, A v_{i}=\lambda_{i} v_{i}$. For example, if $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$, then the eigenvectors are

$$
v_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad v_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

and the eigenvalues are $\lambda_{0}=1, \lambda_{1}=2$. Those vectors are red and extra-thick, in the figure to the left. Notice that one of the vectors gets scaled by $\lambda_{0}=1$, but the other gets scaled by $\lambda_{1}=2$.

An eigenvector is a direction, not just a vector. That means that if you multiply an eigenvector by any scalar, you get the same eigenvector: if $A v_{i}=\lambda_{i} v_{i}$, then it's also true that $c A v_{i}=c \lambda_{i} v_{i}$ for any scalar c. For example: the following are the same eigenvector as v_{1}

$$
\sqrt{2} v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad-v_{1}=\left[\begin{array}{l}
-\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Since scale and sign don't matter, by convention, we normalize so that an eigenvector is always unit-length $\left(\left\|v_{i}\right\|=1\right)$ and the first nonzero element is non-negative $\left(v_{d, 1}>0\right)$.

Eigenvalues: Before you find the eigenvectors, you should first find the eigenvalues. You can do that using this fact:

$$
\begin{aligned}
A v_{i} & =\lambda_{i} v_{i} \\
A v_{i} & =\lambda_{i} I v_{i} \\
A v_{i}-\lambda_{i} l v_{i} & =0 \\
\left(A-\lambda_{i} I\right) v_{i} & =0
\end{aligned}
$$

That means that when you use the linear transform $\left(A-\lambda_{i} I\right)$ to transform the unit circle, the result has an area of
$|A-\lambda I|=0$.

Example:

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
1-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right| \\
& =2-3 \lambda+\lambda^{2}
\end{aligned}
$$

which has roots at $\lambda_{0}=1, \lambda_{1}=2$

There are always d eigenvalues

- The determinant $|A-\lambda I|$ is a $d^{\text {th }}$-order polynomial in λ.
- By the fundamental theorem of algebra, the equation

$$
|A-\lambda I|=0
$$

has exactly d roots (counting repeated roots and complex roots).

- Therefore, any square matrix has exactly d eigenvalues (counting repeated eigenvalues, and complex eigenvalues).

There are not always d unique real eigenvectors

Not every square matrix has d uniquely-defined, real-valued eigenvectors. Some of the most common exceptions are repeated eigenvalues and complex eigenvalues.

- Repeated eigenvalues: if two of the roots of the polynomial are the same $\left(\lambda_{j}=\lambda_{i}\right)$, then that means there is a two-dimensional subspace, v, such that $A v=\lambda_{i} v$. SOLUTION: You can arbitrarily choose any two orthogonal vectors from this subspace to be the eigenvectors. These are not uniquely defined, but you can choose a set which is convenient.

There are not always d unique real eigenvectors

- Complex eigenvalues: A real-valued matrix can have complex eigenvalues only if the corresponding eigenvectors are also complex. Usually this means that there is some sort of periodic sinusoidal transformation of any real-valued vector. For example, consider this matrix:

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Any real-valued vector $x=\left[x_{1}, x_{2}\right]^{T}$ has its elements swapped, i.e., $A x=\left[x_{2},-x_{1}\right]^{T}$. However, this matrix has complex eigenvalues $\lambda= \pm j$, and corresponding complex eigenvectors such that $A v_{i}=\lambda_{i} v_{i}$:

$$
v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
j
\end{array}\right], \quad v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-j
\end{array}\right]
$$

Outline

(1) Intro to the Course
(2) Review: Linear Algebra
(3) Left and Right Eigenvectors

4 Symmetric PSD Matrices
(5) Examples
(6) Summary

Left and right eigenvectors

We've been working with right eigenvectors and right eigenvalues:

$$
A v_{i}=\lambda_{i} v_{i}
$$

There may also be left eigenvectors, which are row vectors u_{i} and corresponding left eigenvalues κ_{i} :

$$
u_{i}^{T} A=\kappa_{i} u_{i}^{T}
$$

It turns out that (1) the eigenvalues are the same, $\kappa_{i}=\lambda_{i}$, (2) the eigenvectors might not be the same, but (3) unpaired eigenvectors are orthogonal.

Proof: Right \& Left Eigenvalues are the same

You can do an interesting thing if you multiply the matrix by its eigenvectors both before and after:

$$
u_{i}^{T}\left(A v_{j}\right)=u_{i}^{T}\left(\lambda_{j} v_{j}\right)=\lambda_{j} u_{i}^{T} v_{j}
$$

....but. . .

$$
\left(u_{i}^{T} A\right) v_{j}=\left(\kappa_{i} u_{i}^{T}\right) v_{j}=\kappa_{i} u_{i}^{T} v_{j}
$$

There are only two ways that both of these things can be true. Either

$$
\kappa_{i}=\lambda_{j} \quad \text { or } \quad u_{i}^{T} v_{j}=0
$$

Summary: Left and right eigenvalues must be paired!!

Summary: for an arbitrary square matrix A,

- Left and right eigenvalues are the same, $\lambda_{i}=\kappa_{i} \forall i$.
- Eigenvectors might NOT be the same
- Left and right eigenvectors of unpaired eigenvalues are orthogonal, $\lambda_{i} \neq \lambda_{j} \Rightarrow u_{i}^{T} v_{j}=0$.

Outline

(1) Intro to the Course
(2) Review: Linear Algebra
(3) Left and Right Eigenvectors

4 Symmetric PSD Matrices
(5) Examples
(6) Summary

Symmetric matrices: left=right

Suppose that $A \in \Re^{m \times n}$ is any arbitrary matrix, not even square $(m \neq n)$. The product $A^{T} A$ is both square and symmetric. For example:

$$
\begin{aligned}
A^{T} A & =\left[\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right]\left[\begin{array}{ll}
a_{1,1} & a_{2,1} \\
a_{1,2} & a_{2,2} \\
a_{1,3} & a_{2,3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sum_{j} a_{1, j}^{2} & \sum_{j} a_{1, j} a_{2, j} \\
\sum_{j} a_{1, j} a_{2, j} & \sum_{j} a_{2, j}^{2}
\end{array}\right] \quad=\left[\begin{array}{cc}
\left\|a_{1}\right\|^{2} & \sum_{j} a_{1}^{T} a_{2} \\
a_{1}^{T} a_{2} & \left\|a_{2}\right\|^{2}
\end{array}\right]
\end{aligned}
$$

where the last row uses a_{i} to mean the $i^{\text {th }}$ column of A. The matrix of $A^{T} A$ is thus the matrix of inner-products of the columns of A; this is called the gram matrix, so we'll use the notation $G=A^{T} A$.

Positive semi-definite matrices

A gram matrix is also positive semi-definite (notation: $G \succeq 0$), meaning that

- Its determinant is non-negative, $|G| \geq 0$, and
- all of its eigenvalues are non-negative, $\lambda_{i} \geq 0$.

Intuitive explanation (not quite a proof): The elements on the main diagonal of S are larger than the other elements in the sense that

$$
a_{i}^{T} a_{j}=\left\|a_{i}\right\| \cdot\left\|a_{j}\right\| \cos \left(\angle\left(a_{i}, a_{j}\right)\right) \leq\left\|a_{i}\right\| \cdot\left\|a_{j}\right\|
$$

Symmetric matrices: left=right

Suppose $G=A^{T} A$ is any symmetric square matrix: then its left and right eigenvectors and eigenvalues are the same.

- The right eigenvectors are $\lambda_{i} v_{i}=G v_{i}$
- The left eigenvectors are $\lambda_{i} u_{i}^{T}=u_{i}^{T} G$
- ... but transposing $G v_{i}$ gives:

$$
\left(G v_{i}\right)^{T}=v_{i}^{T} G^{T}=v_{i}^{T} G
$$

...so it must be the case that $v_{i}=u_{i}$.

Positive semidefinite (PSD) matrices: real generalized eigenvectors

Suppose $G=A^{T} A \succeq 0$. Then every eigenvalue has an associated generalized eigenvector:

- If λ_{i} is unique, then there is an associated real eigenvector, $\lambda_{i} v_{i}=G v_{i}$.
- If $\lambda_{i}=\lambda_{i+1}=\cdots \lambda_{i+k=1}$, then there is a k-dimensional subspace whose vectors v all satisfy $\lambda_{i} v=G v$. We can choose an arbitrary orthonormal basis of that subspace, and call those the "generalized eigenvectors" v_{i}, \cdots, v_{i+k-1} of $\lambda_{i}, \cdots, \lambda_{i+k-1}$.
- Most common example: if $A \in \Re^{m \times n}, n>m$, then at least $n-m$ of the eigenvalues of G are zero.

Symmetric matrices: eigenvectors are orthonormal

Let's combine the following facts:

- $u_{i}^{T} v_{j}=0$ for $i \neq j$ - any square matrix with distinct eigenvalues
- $u_{i}=v_{i}$ - symmetric matrix
- $v_{i}^{T} v_{i}=1$ - standard normalization of eigenvectors for any matrix (this is what $\left\|v_{i}\right\|=1$ means).
Putting it all together, we get that

$$
v_{i}^{T} v_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

The eigenvector matrix

So if G is symmetric with distinct eigenvalues, then its eigenvectors are orthonormal:

$$
v_{i}^{T} v_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

We can write this as

$$
V^{T} V=I
$$

where

$$
V=\left[v_{1}, \ldots, v_{d}\right]
$$

The eigenvector matrix is orthonormal

$$
V^{\top} V=1
$$

.... and it also turns out that

$$
V V^{T}=I
$$

Eigenvectors orthogonalize a symmetric matrix

$$
v_{i}^{T} G v_{j}=v_{i}^{T}\left(\lambda_{j} v_{j}\right)=\lambda_{j} v_{i}^{T} v_{j}= \begin{cases}\lambda_{j}, & i=j \\ 0, & i \neq j\end{cases}
$$

In other words, if a symmetric matrix has d eigenvectors with distinct eigenvalues, then its eigenvectors orthogonalize it:

$$
\begin{gathered}
V^{\top} G V=\Lambda \\
\Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \cdots & 0 \\
0 & 0 & \lambda_{d}
\end{array}\right]
\end{gathered}
$$

Summary: symmetric positive semi-definite matrices

If G is symmetric and positive semi-definite, then

$$
\begin{gathered}
\Lambda=V^{T} G V \\
V V^{T}=V^{T} V=I
\end{gathered}
$$

Putting those two together, we also get this statement, which says that you can reconstruct G from the scaled outer products of its eigenvectors:

$$
V \Lambda V^{T}=V V^{T} G V V^{T}=G
$$

Outline

(1) Intro to the Course
(2) Review: Linear Algebra
(3) Left and Right Eigenvectors

4 Symmetric PSD Matrices
(5) Examples
(6) Summary

In-Lecture Written Example Problem

Pick an arbitrary 2×2 symmetric matrix. Find its eigenvalues and eigenvectors. Show that $\Lambda=V^{T} A V$ and $A=V \wedge V^{T}$.

In-Lecture Jupyter Example Problem

Create a jupyter notebook. Pick an arbitrary 2×2 matrix. Plot a unit circle in the x space, and show what happens to those vectors after transformation to the y space. Calculate the determinant of the matrix, and its eigenvalues and eigenvectors. Show that $A v=\lambda v$.

Outline

(1) Intro to the Course
(2) Review: Linear Algebra
(3) Left and Right Eigenvectors

4 Symmetric PSD Matrices
(5) Examples
(6) Summary

Summary

- A linear transform, A, maps vectors in space x to vectors in space y.
- The determinant, $|A|$, tells you how the volume of the unit sphere is scaled by the linear transform.
- Every $d \times d$ linear transform has d eigenvalues, which are the roots of the equation $|A-\lambda I|=0$.
- Left and right eigenvectors of a matrix are either orthogonal $\left(u_{i}^{T} v_{j}=0\right)$ or share the same eigenvalue ($\kappa_{i}=\lambda_{j}$).
- For a symmetric positive semidefinite matrix $G=A^{T} A$, the left and right eigenvectors are the same. If the eigenvalues are distinct and real, then:

$$
G=V \wedge V^{T}, \quad \Lambda=V^{T} G V, \quad V V^{T}=V^{T} V=I
$$

