Lecture 1: Review of Linear Algebra

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2023



@ Intro to the Course

© Review: Linear Algebra

© Left and Right Eigenvectors
@ Symmetric PSD Matrices
e Examples

@ Summary



Course Intro
°

Outline

@ Intro to the Course



Course Intro
°0

Welcome to ECE 417, Multimedia Signal Processing!

@ This course is about video and audio signals.

o At this point, let's talk about the web page: https:
//courses.grainger.illinois.edu/ece417/£a2023/


https://courses.grainger.illinois.edu/ece417/fa2023/
https://courses.grainger.illinois.edu/ece417/fa2023/
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CampusWire and GradeScope

@ If you're not yet added to the CampusWire or GradeScope
pages, please add yourself.

@ The CampusWire link is
https://campuswire.com/p/G4B80E164A, with code 8237.

@ The GradeScope link is
https://www.gradescope.com/courses/560497, with
code K3EX68.


https://campuswire.com/p/G4B80E16A
https://www.gradescope.com/courses/560497
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Reading: https:
//math.mit.edu/~gs/linearalgebra/ila6/ila6_6_1.pdf


https://math.mit.edu/~gs/linearalgebra/ila6/ila6_6_1.pdf
https://math.mit.edu/~gs/linearalgebra/ila6/ila6_6_1.pdf
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A linear transform y = Ax maps vector
space x onto vector space y. For example:

the matrix A = [ L

0 2 ] maps the vectors

X0, X1, X2, X3 =

o]

to the vectors yo, y1, ¥2, ¥3 =

o)1) 2] [ 2]
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A linear transform y = Ax maps vector
space x onto vector space y. The absolute
value of the determinant of A tells you how
much the area of a unit circle is changed

under the transformation.
11

0 2
unit circle in x (which has an area of ) is
mapped to an ellipse with an area that is f /
abs(|A|) = 2 times larger, i.e., i.e., WV
mabs(|A|) = 2. ‘

For example, if A = ] , then the
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For a d-dimensional square matrix, there
may be up to d different directions x = v;
such that, for some scalar \;, Av; = \;v;.

o ] then the

For example, if A = [ 0 2

eigenvectors are

Voz[é}’vlzlﬁ]’

and the eigenvalues are A\g =1, \; = 2.
Those vectors are red and extra-thick, in
the figure to the left. Notice that one of
the vectors gets scaled by A\g = 1, but the
other gets scaled by A1 = 2.
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An eigenvector is a direction, not just a
vector. That means that if you multiply an
eigenvector by any scalar, you get the same
eigenvector: if Av; = A;v;, then it's also
true that cAv; = c\;v; for any scalar c.

For example: the following are the same
eigenvector as v

ﬁvl:[ﬂ, =

Sl

Since scale and sign don’t matter, by
convention, we normalize so that an
eigenvector is always unit-length (||vi|| = 1)
and the first nonzero element is
non-negative (vg 1 > 0).
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Eigenvalues: Before you find the
eigenvectors, you should first find the
eigenvalues. You can do that using this
fact:

Av; = \jv;

Av; = A\ilv;
Av; — A\ilvi =0
(A=Xl)v;=0

That means that when you use the linear
transform (A — A;/) to transform the unit
circle, the result has an area of

|A— A\l =0.
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Example:
1-A 1
|A_M’_‘ 0 2-2)\ ’
=2-3x+ )\
which has roots at \g =1, \{ =2




Linear Algebra
0000000e00

There are always d eigenvalues

o The determinant |A — M| is a d'"-order polynomial in .

@ By the fundamental theorem of algebra, the equation
|JA—X|=0

has exactly d roots (counting repeated roots and complex
roots).

@ Therefore, any square matrix has exactly d eigenvalues
(counting repeated eigenvalues, and complex eigenvalues).
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There are not always d unique real eigenvectors

Not every square matrix has d uniquely-defined, real-valued
eigenvectors. Some of the most common exceptions are repeated
eigenvalues and complex eigenvalues.

o Repeated eigenvalues: if two of the roots of the polynomial
are the same (\; = A;), then that means there is a
two-dimensional subspace, v, such that Av = A;v.
SOLUTION: You can arbitrarily choose any two orthogonal
vectors from this subspace to be the eigenvectors. These are
not uniquely defined, but you can choose a set which is
convenient.
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There are not always d unique real eigenvectors

o Complex eigenvalues: A real-valued matrix can have
complex eigenvalues only if the corresponding eigenvectors are
also complex. Usually this means that there is some sort of
periodic sinusoidal transformation of any real-valued vector.
For example, consider this matrix:

0 1
A=
ol
Any real-valued vector x = [x1, 2] has its elements swapped,
i.e., Ax = [xo, —xl]T. However, this matrix has complex

eigenvalues A = 4, and corresponding complex eigenvectors
such that Av; = \;v;:

1] el
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Left and right eigenvectors

We've been working with right eigenvectors and right eigenvalues:
Av; = A\jv;

There may also be left eigenvectors, which are row vectors u; and
corresponding left eigenvalues k;:

T

TA— (.
UI'A—K/,Ul'

It turns out that (1) the eigenvalues are the same, k; = \;, (2) the
eigenvectors might not be the same, but (3) unpaired eigenvectors
are orthogonal.
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Proof: Right & Left Eigenvalues are the same

You can do an interesting thing if you multiply the matrix by its
eigenvectors both before and after:

ul (Av)) = uf (\vy) = Ny

.. but. ..
(ul Ay = (siu] )v; = Ky v

There are only two ways that both of these things can be true.

Either

ki = Aj or ul

i V=0
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Summary: Left and right eigenvalues must be paired!!

Summary: for an arbitrary square matrix A,
o Left and right eigenvalues are the same, \; = k;Vi.
o Eigenvectors might NOT be the same

o Left and right eigenvectors of unpaired eigenvalues are
orthogonal, \j # \; = u,-TvJ- =0.
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Symmetric matrices: left=right

Suppose that A € R™*" is any arbitrary matrix, not even square
(m # n). The product AT A is both square and symmetric. For
example:

arl d12 a3 a1 921
ATA:|: ) ) ) :|

di2 da22
a a a ’ ’
21 a2 a3 a3 a2
_ [ PRI YITINEYY ] _ [ la* 35, af 2
Zj aijazj ZJ' a%,j a17-‘92 ”32H2

where the last row uses a; to mean the i*® column of A. The
matrix of AT A is thus the matrix of inner-products of the columns

of A; this is called the gram matrix, so we'll use the notation
G=ATA
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Positive semi-definite matrices

A gram matrix is also positive semi-definite (notation: G > 0),
meaning that

@ Its determinant is non-negative, |G| > 0, and
@ all of its eigenvalues are non-negative, A\; > 0.

Intuitive explanation (not quite a proof): The elements on the
main diagonal of S are larger than the other elements in the sense
that

af aj = ||aill - || cos (£(ar, 37)) < l|aill - [l
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Symmetric matrices: left=right

Suppose G = AT A is any symmetric square matrix: then its left

and right eigenvectors and eigenvalues are the same.
@ The right eigenvectors are \;v; = Gv;

o The left eigenvectors are \ju/ = ul G
@ ...but transposing Gv; gives:
(Gv)T=v!GT =v'G

...S0 it must be the case that v; = u;.
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Positive semidefinite (PSD) matrices: real generalized

eigenvectors

Suppose G = AT A = 0. Then every eigenvalue has an associated
generalized eigenvector:

e If \; is unique, then there is an associated real eigenvector,
)\,'V,' = GV,'.

o If \j = Ajyx1 = Ajitk=1, then there is a k-dimensional
subspace whose vectors v all satisfy A;v = Gv. We can
choose an arbitrary orthonormal basis of that subspace, and
call those the “generalized eigenvectors” vj,--- , vjix—1 of
iy Nik—1-

e Most common example: if A€ R™" n > m, then at least
n — m of the eigenvalues of G are zero.
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Symmetric matrices: eigenvectors are orthonormal

Let's combine the following facts:

,-T\/j = 0 for i # j — any square matrix with distinct

eigenvalues

o u

@ u; = v; — symmetric matrix
° v,-Tv,- = 1 — standard normalization of eigenvectors for any

matrix (this is what ||v;|| = 1 means).

Putting it all together, we get that

1 i
ViTVj: I J
0 i#]



Symmetric
00000000

The eigenvector matrix

So if G is symmetric with distinct eigenvalues, then its
eigenvectors are orthonormal:

1 i
ViTVj = I j
0 i#J
We can write this as
viv =1

where
V:[vl,...,vd]
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The eigenvector matrix is orthonormal

viv =1
...and it also turns out that

wl =
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Eigenvectors orthogonalize a symmetric matrix

A, =]

0, i#j

In other words, if a symmetric matrix has d eigenvectors with
distinct eigenvalues, then its eigenvectors orthogonalize it:

v,-TG\/j = v,-T()\jvj) = )\jV,-TVj = {

ViGgy =A
M 0 0
A=1| 0 0
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Summary: symmetric positive semi-definite matrices

If G is symmetric and positive semi-definite, then
A=VTGV
Wl =viv=i

Putting those two together, we also get this statement, which says
that you can reconstruct G from the scaled outer products of its

eigenvectors:
VAVT = wWTewT’ =6
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In-Lecture Written Example Problem

Pick an arbitrary 2 x 2 symmetric matrix. Find its eigenvalues and
eigenvectors. Show that A= VTAV and A= VAV,
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In-Lecture Jupyter Example Problem

Create a jupyter notebook. Pick an arbitrary 2 x 2 matrix. Plot a
unit circle in the x space, and show what happens to those vectors
after transformation to the y space. Calculate the determinant of
the matrix, and its eigenvalues and eigenvectors. Show that

Av = Av.
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Summary

A linear transform, A, maps vectors in space x to vectors in
space y.

@ The determinant, |A]|, tells you how the volume of the unit
sphere is scaled by the linear transform.

@ Every d x d linear transform has d eigenvalues, which are the
roots of the equation |[A — /| = 0.

o Left and right eigenvectors of a matrix are either orthogonal
(u v; = 0) or share the same eigenvalue (r; = Aj).

e For a symmetric positive semidefinite matrix G = AT A, the
left and right eigenvectors are the same. If the eigenvalues are

distinct and real, then:

G=VAVT, A=VTGgv, wT=vTv=y
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