Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary

Lecture 1: Review of Linear Algebra

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2023

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary

- 2 Review: Linear Algebra
- 3 Left and Right Eigenvectors
- 4 Symmetric PSD Matrices

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
●○○	00000000000	0000	0000000000	000	00
Outline					

- 1 Intro to the Course
- 2 Review: Linear Algebra
- 3 Left and Right Eigenvectors
- 4 Symmetric PSD Matrices
- 5 Examples

6 Summary

- This course is about video and audio signals.
- At this point, let's talk about the web page: https: //courses.grainger.illinois.edu/ece417/fa2023/

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Compuel	Nire and Cr	deSeene		000	
Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
○○●	00000000000	0000	0000000000	000	00

- If you're not yet added to the CampusWire or GradeScope pages, please add yourself.
- The CampusWire link is https://campuswire.com/p/G4B80E16A, with code 8237.
- The GradeScope link is https://www.gradescope.com/courses/560497, with code K3EX68.

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000		0000	0000000000	000	00
Outline					

- 2 Review: Linear Algebra
- 3 Left and Right Eigenvectors
- 4 Symmetric PSD Matrices

5 Examples

6 Summary

・ キョット 4 日 マト 4 日 マークタイ

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
	0000000000				

```
Reading: https:
//math.mit.edu/~gs/linearalgebra/ila6/ila6_6_1.pdf
```

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000	0000000000	0000	000000000	000	00

A linear transform y = Ax maps vector space x onto vector space y. For example: the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ maps the vectors $x_0, x_1, x_2, x_3 =$

$$\left[\begin{array}{c}1\\0\end{array}\right], \left[\begin{array}{c}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{array}\right], \left[\begin{array}{c}0\\1\end{array}\right], \left[\begin{array}{c}-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{array}\right]$$

to the vectors $y_0, y_1, y_2, y_3 =$

$$\left[\begin{array}{c}1\\0\end{array}\right], \left[\begin{array}{c}\sqrt{2}\\\sqrt{2}\end{array}\right], \left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}0\\\sqrt{2}\end{array}\right]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000	0000000000	0000	000000000	000	00

A linear transform y = Ax maps vector space x onto vector space y. The absolute value of the determinant of A tells you how much the area of a unit circle is changed under the transformation. For example, if $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, then the unit circle in x (which has an area of π) is mapped to an ellipse with an area that is abs(|A|) = 2 times larger, i.e., i.e., $\pi \operatorname{abs}(|A|) = 2\pi.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙へ⊙

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
	0000000000	0000	0000000000		

For a *d*-dimensional square matrix, there may be up to *d* different directions $x = v_i$ such that, for some scalar λ_i , $Av_i = \lambda_i v_i$. For example, if $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, then the eigenvectors are

$$v_0 = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \quad v_1 = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix},$$

and the eigenvalues are $\lambda_0 = 1$, $\lambda_1 = 2$. Those vectors are red and extra-thick, in the figure to the left. Notice that one of the vectors gets scaled by $\lambda_0 = 1$, but the other gets scaled by $\lambda_1 = 2$.

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
	0000000000				

An eigenvector is a direction, not just a vector. That means that if you multiply an eigenvector by any scalar, you get the same eigenvector: if $Av_i = \lambda_i v_i$, then it's also true that $cAv_i = c\lambda_i v_i$ for any scalar c. For example: the following are the same eigenvector as v_1

$$\sqrt{2}\mathbf{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad -\mathbf{v}_1 = \begin{bmatrix} -\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}} \end{bmatrix}$$

Since scale and sign don't matter, by convention, we normalize so that an eigenvector is always unit-length ($||v_i|| = 1$) and the first nonzero element is non-negative ($v_{d,1} > 0$).

(日本)(四本)(日本)(日本)(日本)

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000	00000000000	0000	000000000	000	00

Eigenvalues: Before you find the eigenvectors, you should first find the eigenvalues. You can do that using this fact:

$$Av_{i} = \lambda_{i}v_{i}$$
$$Av_{i} = \lambda_{i}lv_{i}$$
$$Av_{i} - \lambda_{i}lv_{i} = 0$$
$$(A - \lambda_{i}l)v_{i} = 0$$

That means that when you use the linear transform $(A - \lambda_i I)$ to transform the unit circle, the result has an area of $|A - \lambda I| = 0$.

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
	00000000000				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- The determinant $|A \lambda I|$ is a d^{th} -order polynomial in λ .
- By the fundamental theorem of algebra, the equation

$$|A - \lambda I| = 0$$

has exactly d roots (counting repeated roots and complex roots).

• Therefore, **any square matrix has exactly** *d* **eigenvalues** (counting repeated eigenvalues, and complex eigenvalues).

Not every square matrix has *d* uniquely-defined, real-valued eigenvectors. Some of the most common exceptions are **repeated eigenvalues** and **complex eigenvalues**.

Repeated eigenvalues: if two of the roots of the polynomial are the same (λ_j = λ_i), then that means there is a two-dimensional subspace, ν, such that Av = λ_iv. SOLUTION: You can arbitrarily choose any two orthogonal vectors from this subspace to be the eigenvectors. These are not uniquely defined, but you can choose a set which is convenient.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• **Complex eigenvalues:** A real-valued matrix can have complex eigenvalues only if the corresponding eigenvectors are also complex. Usually this means that there is some sort of periodic sinusoidal transformation of any real-valued vector. For example, consider this matrix:

$$A = \left[egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight]$$

Any real-valued vector $x = [x_1, x_2]^T$ has its elements swapped, i.e., $Ax = [x_2, -x_1]^T$. However, this matrix has complex eigenvalues $\lambda = \pm j$, and corresponding complex eigenvectors such that $Av_i = \lambda_i v_i$:

$$v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ j \end{bmatrix}, \quad v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -j \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000	00000000000	●○○○	0000000000	000	00
Outline					

- Intro to the Course
- 2 Review: Linear Algebra
- 3 Left and Right Eigenvectors
- 4 Symmetric PSD Matrices

5 Examples

6 Summary

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
	00000000000	○●00	0000000000	000	00
Left and	right eigenv	ectors			

We've been working with right eigenvectors and right eigenvalues:

$$Av_i = \lambda_i v_i$$

There may also be left eigenvectors, which are row vectors u_i and corresponding left eigenvalues κ_i :

$$u_i^T A = \kappa_i u_i^T$$

It turns out that (1) the eigenvalues are the same, $\kappa_i = \lambda_i$, (2) the eigenvectors might not be the same, but (3) unpaired eigenvectors are orthogonal.

You can do an interesting thing if you multiply the matrix by its eigenvectors both before and after:

$$u_i^T(Av_j) = u_i^T(\lambda_j v_j) = \lambda_j u_i^T v_j$$

...but...

$$(u_i^T A)v_j = (\kappa_i u_i^T)v_j = \kappa_i u_i^T v_j$$

There are only two ways that both of these things can be true. Either

$$\kappa_i = \lambda_j$$
 or $u_i^T v_j = 0$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary: for an arbitrary square matrix A,

- Left and right eigenvalues are the same, $\lambda_i = \kappa_i \forall i$.
- Eigenvectors might NOT be the same
- Left and right eigenvectors of unpaired eigenvalues are orthogonal, λ_i ≠ λ_j ⇒ u_i^T v_j = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000	00000000000	0000	•••••	000	00
Outline					

- Intro to the Course
- 2 Review: Linear Algebra
- 3 Left and Right Eigenvectors
- 4 Symmetric PSD Matrices

5 Examples

6 Summary

Suppose that $A \in \Re^{m \times n}$ is any arbitrary matrix, not even square $(m \neq n)$. The product $A^T A$ is both square and symmetric. For example:

$$A^{T}A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix} \begin{bmatrix} a_{1,1} & a_{2,1} \\ a_{1,2} & a_{2,2} \\ a_{1,3} & a_{2,3} \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{j} a_{1,j}^{2} & \sum_{j} a_{1,j} a_{2,j} \\ \sum_{j} a_{1,j} a_{2,j} & \sum_{j} a_{2,j}^{2} \end{bmatrix} = \begin{bmatrix} \|a_{1}\|^{2} & \sum_{j} a_{1}^{T} a_{2} \\ a_{1}^{T} a_{2} & \|a_{2}\|^{2} \end{bmatrix}$$

where the last row uses a_i to mean the i^{th} column of A. The matrix of $A^T A$ is thus the matrix of inner-products of the columns of A; this is called the **gram matrix**, so we'll use the notation $G = A^T A$.

Course Intro Linear Algebra Eigenvectors Symmetric Examples Summary 000 Positive semi-definite matrices

A gram matrix is also positive semi-definite (notation: $G \succeq 0$), meaning that

- Its determinant is non-negative, $|G| \ge 0$, and
- all of its eigenvalues are non-negative, $\lambda_i \ge 0$.

Intuitive explanation (not quite a proof): The elements on the main diagonal of S are larger than the other elements in the sense that

$$a_i^{\mathsf{T}} a_j = \|a_i\| \cdot \|a_j\| \cos\left(\angle(a_i, a_j)\right) \le \|a_i\| \cdot \|a_j\|$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Suppose $G = A^T A$ is any symmetric square matrix: then its left and right eigenvectors and eigenvalues are the same.

- The right eigenvectors are $\lambda_i v_i = G v_i$
- The left eigenvectors are $\lambda_i u_i^T = u_i^T G$
- ... but transposing *Gv_i* gives:

$$(Gv_i)^T = v_i^T G^T = v_i^T G$$

... so it must be the case that $v_i = u_i$.

Course Intro Linear Algebra Eigenvectors Symmetric Examples Summary Positive semidefinite (PSD) matrices: real generalized eigenvectors eigenvectors

Suppose $G = A^T A \succeq 0$. Then every eigenvalue has an associated generalized eigenvector:

- If λ_i is unique, then there is an associated real eigenvector, $\lambda_i v_i = Gv_i$.
- If $\lambda_i = \lambda_{i+1} = \cdots + \lambda_{i+k=1}$, then there is a *k*-dimensional subspace whose vectors *v* all satisfy $\lambda_i v = Gv$. We can choose an arbitrary orthonormal basis of that subspace, and call those the "generalized eigenvectors" v_i, \cdots, v_{i+k-1} of $\lambda_i, \cdots, \lambda_{i+k-1}$.
 - Most common example: if $A \in \Re^{m \times n}$, n > m, then at least n m of the eigenvalues of G are zero.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let's combine the following facts:

- $u_i^T v_j = 0$ for $i \neq j$ any square matrix with distinct eigenvalues
- $u_i = v_i$ symmetric matrix
- $v_i^T v_i = 1$ standard normalization of eigenvectors for any matrix (this is what $||v_i|| = 1$ means).

Putting it all together, we get that

$$\mathbf{v}_i^T \mathbf{v}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
	00000000000	0000	○○○○○○●○○○	000	00
The eige	nvector mat	rix			

So if G is symmetric with distinct eigenvalues, then its eigenvectors are orthonormal:

$$\mathbf{v}_i^T \mathbf{v}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

We can write this as

$$V^T V = I$$

where

$$V = [v_1, \ldots, v_d]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Course Intro Linear Algebra Eigenvectors Symmetric 0000000000

The eigenvector matrix is orthonormal

$$V^T V = I$$

... and it also turns out that

$$VV^T = I$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\mathbf{v}_i^T \mathbf{G} \mathbf{v}_j = \mathbf{v}_i^T (\lambda_j \mathbf{v}_j) = \lambda_j \mathbf{v}_i^T \mathbf{v}_j = \begin{cases} \lambda_j, & i = j \\ 0, & i \neq j \end{cases}$$

In other words, if a symmetric matrix has d eigenvectors with distinct eigenvalues, then its eigenvectors orthogonalize it:

$$V^{T}GV = \Lambda$$
$$\Lambda = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_{d} \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If G is symmetric and positive semi-definite, then

 $\Lambda = V^T G V$

$$VV^T = V^T V = I$$

Putting those two together, we also get this statement, which says that you can reconstruct G from the scaled outer products of its eigenvectors:

$$V\Lambda V^T = VV^T GVV^T = G$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
000	00000000000	0000	0000000000	●○○	00
Outline					

- Intro to the Course
- 2 Review: Linear Algebra
- 3 Left and Right Eigenvectors
- 4 Symmetric PSD Matrices

5 Examples

6 Summary

Pick an arbitrary 2 × 2 symmetric matrix. Find its eigenvalues and eigenvectors. Show that $\Lambda = V^T A V$ and $A = V \Lambda V^T$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Course Intro Linear Algebra Eigenvectors Symmetric Examples 000

In-Lecture Jupyter Example Problem

Create a jupyter notebook. Pick an arbitrary 2×2 matrix. Plot a unit circle in the x space, and show what happens to those vectors after transformation to the y space. Calculate the determinant of the matrix, and its eigenvalues and eigenvectors. Show that $Av = \lambda v$

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
	00000000000	0000	0000000000	000	●○
Outline					

- Intro to the Course
- 2 Review: Linear Algebra
- 3 Left and Right Eigenvectors
- 4 Symmetric PSD Matrices

5 Examples

Course Intro	Linear Algebra	Eigenvectors	Symmetric	Examples	Summary
	00000000000	0000	000000000	000	○●
Summary					

- A linear transform, A, maps vectors in space x to vectors in space y.
- The determinant, |A|, tells you how the volume of the unit sphere is scaled by the linear transform.
- Every $d \times d$ linear transform has d eigenvalues, which are the roots of the equation $|A \lambda I| = 0$.
- Left and right eigenvectors of a matrix are either orthogonal $(u_i^T v_j = 0)$ or share the same eigenvalue $(\kappa_i = \lambda_j)$.
- For a symmetric positive semidefinite matrix $G = A^T A$, the left and right eigenvectors are the same. If the eigenvalues are distinct and real, then:

$$G = V \Lambda V^T$$
, $\Lambda = V^T G V$, $V V^T = V^T V = I$