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Welcome to ECE 417, Multimedia Signal Processing!

This course is about video and audio signals.

At this point, let’s talk about the web page: https:

//courses.grainger.illinois.edu/ece417/fa2023/

https://courses.grainger.illinois.edu/ece417/fa2023/
https://courses.grainger.illinois.edu/ece417/fa2023/
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CampusWire and GradeScope

If you’re not yet added to the CampusWire or GradeScope
pages, please add yourself.

The CampusWire link is
https://campuswire.com/p/G4B80E16A, with code 8237.

The GradeScope link is
https://www.gradescope.com/courses/560497, with
code K3EX68.

https://campuswire.com/p/G4B80E16A
https://www.gradescope.com/courses/560497
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Reading: https:

//math.mit.edu/~gs/linearalgebra/ila6/ila6_6_1.pdf

https://math.mit.edu/~gs/linearalgebra/ila6/ila6_6_1.pdf
https://math.mit.edu/~gs/linearalgebra/ila6/ila6_6_1.pdf
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A linear transform y = Ax maps vector
space x onto vector space y . For example:

the matrix A =

[
1 1
0 2

]
maps the vectors

x0, x1, x2, x3 =[
1
0

]
,

[
1√
2
1√
2

]
,

[
0
1

]
,

[
− 1√

2
1√
2

]

to the vectors y0, y1, y2, y3 =[
1
0

]
,

[ √
2√
2

]
,

[
1
2

]
,

[
0√
2

]



Course Intro Linear Algebra Eigenvectors Symmetric Examples Summary

A linear transform y = Ax maps vector
space x onto vector space y . The absolute
value of the determinant of A tells you how
much the area of a unit circle is changed
under the transformation.

For example, if A =

[
1 1
0 2

]
, then the

unit circle in x (which has an area of π) is
mapped to an ellipse with an area that is
abs(|A|) = 2 times larger, i.e., i.e.,
πabs(|A|) = 2π.
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For a d-dimensional square matrix, there
may be up to d different directions x = vi
such that, for some scalar λi , Avi = λivi .

For example, if A =

[
1 1
0 2

]
, then the

eigenvectors are

v0 =

[
1
0

]
, v1 =

[
1√
2
1√
2

]
,

and the eigenvalues are λ0 = 1, λ1 = 2.
Those vectors are red and extra-thick, in
the figure to the left. Notice that one of
the vectors gets scaled by λ0 = 1, but the
other gets scaled by λ1 = 2.
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An eigenvector is a direction, not just a
vector. That means that if you multiply an
eigenvector by any scalar, you get the same
eigenvector: if Avi = λivi , then it’s also
true that cAvi = cλivi for any scalar c .
For example: the following are the same
eigenvector as v1

√
2v1 =

[
1
1

]
, − v1 =

[
− 1√

2

− 1√
2

]

Since scale and sign don’t matter, by
convention, we normalize so that an
eigenvector is always unit-length (‖vi‖ = 1)
and the first nonzero element is
non-negative (vd ,1 > 0).
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Eigenvalues: Before you find the
eigenvectors, you should first find the
eigenvalues. You can do that using this
fact:

Avi = λivi

Avi = λi Ivi

Avi − λi Ivi = 0

(A− λi I )vi = 0

That means that when you use the linear
transform (A− λi I ) to transform the unit
circle, the result has an area of
|A− λI | = 0.
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Example:

|A− λI | =

∣∣∣∣ 1− λ 1
0 2− λ

∣∣∣∣
= 2− 3λ+ λ2

which has roots at λ0 = 1, λ1 = 2
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There are always d eigenvalues

The determinant |A− λI | is a d th-order polynomial in λ.

By the fundamental theorem of algebra, the equation

|A− λI | = 0

has exactly d roots (counting repeated roots and complex
roots).

Therefore, any square matrix has exactly d eigenvalues
(counting repeated eigenvalues, and complex eigenvalues).
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There are not always d unique real eigenvectors

Not every square matrix has d uniquely-defined, real-valued
eigenvectors. Some of the most common exceptions are repeated
eigenvalues and complex eigenvalues.

Repeated eigenvalues: if two of the roots of the polynomial
are the same (λj = λi ), then that means there is a
two-dimensional subspace, v , such that Av = λiv .
SOLUTION: You can arbitrarily choose any two orthogonal
vectors from this subspace to be the eigenvectors. These are
not uniquely defined, but you can choose a set which is
convenient.
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There are not always d unique real eigenvectors

Complex eigenvalues: A real-valued matrix can have
complex eigenvalues only if the corresponding eigenvectors are
also complex. Usually this means that there is some sort of
periodic sinusoidal transformation of any real-valued vector.
For example, consider this matrix:

A =

[
0 1
−1 0

]
Any real-valued vector x = [x1, x2]T has its elements swapped,
i.e., Ax = [x2,−x1]T . However, this matrix has complex
eigenvalues λ = ±j , and corresponding complex eigenvectors
such that Avi = λivi :

v1 =
1√
2

[
1
j

]
, v2 =

1√
2

[
1
−j

]



Course Intro Linear Algebra Eigenvectors Symmetric Examples Summary

Outline

1 Intro to the Course

2 Review: Linear Algebra

3 Left and Right Eigenvectors

4 Symmetric PSD Matrices

5 Examples

6 Summary



Course Intro Linear Algebra Eigenvectors Symmetric Examples Summary

Left and right eigenvectors

We’ve been working with right eigenvectors and right eigenvalues:

Avi = λivi

There may also be left eigenvectors, which are row vectors ui and
corresponding left eigenvalues κi :

uTi A = κiu
T
i

It turns out that (1) the eigenvalues are the same, κi = λi , (2) the
eigenvectors might not be the same, but (3) unpaired eigenvectors
are orthogonal.
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Proof: Right & Left Eigenvalues are the same

You can do an interesting thing if you multiply the matrix by its
eigenvectors both before and after:

uTi (Avj) = uTi (λjvj) = λju
T
i vj

. . . but. . .
(uTi A)vj = (κiu

T
i )vj = κiu

T
i vj

There are only two ways that both of these things can be true.
Either

κi = λj or uTi vj = 0
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Summary: Left and right eigenvalues must be paired!!

Summary: for an arbitrary square matrix A,

Left and right eigenvalues are the same, λi = κi∀i .
Eigenvectors might NOT be the same

Left and right eigenvectors of unpaired eigenvalues are
orthogonal, λi 6= λj ⇒ uTi vj = 0.
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Symmetric matrices: left=right

Suppose that A ∈ <m×n is any arbitrary matrix, not even square
(m 6= n). The product ATA is both square and symmetric. For
example:

ATA =

[
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

] a1,1 a2,1
a1,2 a2,2
a1,3 a2,3


=

[ ∑
j a

2
1,j

∑
j a1,ja2,j∑

j a1,ja2,j
∑

j a
2
2,j

]
=

[
‖a1‖2

∑
j a

T
1 a2

aT1 a2 ‖a2‖2
]

where the last row uses ai to mean the i th column of A. The
matrix of ATA is thus the matrix of inner-products of the columns
of A; this is called the gram matrix, so we’ll use the notation
G = ATA.
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Positive semi-definite matrices

A gram matrix is also positive semi-definite (notation: G � 0),
meaning that

Its determinant is non-negative, |G | ≥ 0, and

all of its eigenvalues are non-negative, λi ≥ 0.

Intuitive explanation (not quite a proof): The elements on the
main diagonal of S are larger than the other elements in the sense
that

aTi aj = ‖ai‖ · ‖aj‖ cos (∠(ai , aj)) ≤ ‖ai‖ · ‖aj‖
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Symmetric matrices: left=right

Suppose G = ATA is any symmetric square matrix: then its left
and right eigenvectors and eigenvalues are the same.

The right eigenvectors are λivi = Gvi

The left eigenvectors are λiu
T
i = uTi G

. . . but transposing Gvi gives:

(Gvi )
T = vTi GT = vTi G

. . . so it must be the case that vi = ui .
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Positive semidefinite (PSD) matrices: real generalized
eigenvectors

Suppose G = ATA � 0. Then every eigenvalue has an associated
generalized eigenvector:

If λi is unique, then there is an associated real eigenvector,
λivi = Gvi .

If λi = λi+1 = · · ·λi+k=1, then there is a k-dimensional
subspace whose vectors v all satisfy λiv = Gv . We can
choose an arbitrary orthonormal basis of that subspace, and
call those the “generalized eigenvectors” vi , · · · , vi+k−1 of
λi , · · · , λi+k−1.

Most common example: if A ∈ <mxn, n > m, then at least
n −m of the eigenvalues of G are zero.
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Symmetric matrices: eigenvectors are orthonormal

Let’s combine the following facts:

uTi vj = 0 for i 6= j — any square matrix with distinct
eigenvalues

ui = vi — symmetric matrix

vTi vi = 1 — standard normalization of eigenvectors for any
matrix (this is what ‖vi‖ = 1 means).

Putting it all together, we get that

vTi vj =

{
1 i = j

0 i 6= j
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The eigenvector matrix

So if G is symmetric with distinct eigenvalues, then its
eigenvectors are orthonormal:

vTi vj =

{
1 i = j

0 i 6= j

We can write this as
V TV = I

where
V = [v1, . . . , vd ]
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The eigenvector matrix is orthonormal

V TV = I

. . . and it also turns out that

VV T = I
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Eigenvectors orthogonalize a symmetric matrix

vTi Gvj = vTi (λjvj) = λjv
T
i vj =

{
λj , i = j

0, i 6= j

In other words, if a symmetric matrix has d eigenvectors with
distinct eigenvalues, then its eigenvectors orthogonalize it:

V TGV = Λ

Λ =

 λ1 0 0
0 . . . 0
0 0 λd
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Summary: symmetric positive semi-definite matrices

If G is symmetric and positive semi-definite, then

Λ = V TGV

VV T = V TV = I

Putting those two together, we also get this statement, which says
that you can reconstruct G from the scaled outer products of its
eigenvectors:

VΛV T = VV TGVV T = G
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In-Lecture Written Example Problem

Pick an arbitrary 2× 2 symmetric matrix. Find its eigenvalues and
eigenvectors. Show that Λ = V TAV and A = VΛV T .
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In-Lecture Jupyter Example Problem

Create a jupyter notebook. Pick an arbitrary 2× 2 matrix. Plot a
unit circle in the x space, and show what happens to those vectors
after transformation to the y space. Calculate the determinant of
the matrix, and its eigenvalues and eigenvectors. Show that
Av = λv .
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Summary

A linear transform, A, maps vectors in space x to vectors in
space y .

The determinant, |A|, tells you how the volume of the unit
sphere is scaled by the linear transform.

Every d × d linear transform has d eigenvalues, which are the
roots of the equation |A− λI | = 0.

Left and right eigenvectors of a matrix are either orthogonal
(uTi vj = 0) or share the same eigenvalue (κi = λj).

For a symmetric positive semidefinite matrix G = ATA, the
left and right eigenvectors are the same. If the eigenvalues are
distinct and real, then:

G = VΛV T , Λ = V TGV , VV T = V TV = I
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