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Problem 3.1

Suppose y = ‖AX‖F , the Frobenius norm of A times X (note: NOT the squared Frobenius norm!) Find
∂y/∂X.

Solution: There are several approaches you could use. Since ‖AX‖F and ‖AX‖2F are both scalars, the
following approach works:
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Problem 3.2

You are trying to represent a mapping from a real-valued scalar input, x ∈ <, to a real-valued scalar
output, y ∈ <. Suppose that you have a series of training examples, D = {(x1, y1), . . . , (xn, yn)}. You want
to represent the mapping from y to x using the following two-layer network:

z1 = w1x+ b1

a1 = ReLU(z1)

g(x) = wT
2 a1 + b2

Your goal is to find w1, b1, w2 and b2 in order to minimize L which is defined as
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How many hidden nodes (what dimension of w1) do you need to guarantee that L = 0? In terms of the
training tokens xi and yi, choose some values of w1, b1, w2 and b2 that will result in L = 0. Hint: you may
find it convenient to assume that the data are sorted in order of increasing x, i.e., xi < xi+1 for all i.

Solution: We need at least n − 1 hidden nodes to make sure that L = 0. Taking advantage of the hint,
we can set the offsets and slopes so that the first training token is represented by b2, and each succeeding
training example is represented by the cumulative sum of ReLUs for all previous xi. There are a few different
ways in which this can be done; here is one:

b2 = y1

b1,i = −xi−1, 2 ≤ i ≤ n
w1,i = 1

w2,i =
yi+1 − yi
xi+1 − xi

−
i−1∑
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w2,j

Problem 3.3

Suppose you have a neural net that is configured as a binary classifier. Given a vector input x, it computes
a scalar output g(x) ∈ (0, 1) according to

z1 = W1x + b1

a1 = ReLU(z1)

z2 = wT
2 a1 + b2

g(x) = σ(z2)

where σ(·) is the logistic sigmoid, and ReLU(z1) applies rectified linear nonlinearities to each element of z1.
Suppose that the loss function is binary cross entropy, i.e.,

L = −y ln g(x)− (1− y) ln(1− g(x))

What is ∂L/∂W1? Express your answer in terms of any of the vectors or matrices specified in the problem,
but if you have to define any additional matrices (e.g., if you have to define ReLU′(z1)), be sure to specify the
values of every element of every such matrix in terms of the elements of the matrices and vectors provided.

Solution: First, the derivative w.r.t. the matrix can be done element-by-element:
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Now we need to find the derivative w.r.t. z1. For this, we can use the chain rule:
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where σ′(z2) = σ(z2)(1 − σ(z2)), and ReLU′(z1) is a diagonal matrix whose (i, i)th element is 1 if z1,i > 0,
and 0 otherwise. Putting it all together, we get
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Note that further simplifications of this answer are possible, though not required by the problem state-
ment. For example, σ′(z2) = g(x)(1− g(x)), and therefore, after some simplification,
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Problem 3.4

The filters in convolutional neural nets tend to learn common features of the images on which they are
trained. To see how this occurs, consider the following CNN, composed of a one-channel convolutional layer
followed by one global pooling layer, with a grayscale input image:

z1[m,n] = w1[m,n] ∗ x[m,n] (3.4-1)

g(x) =
M−1
max
m=0

N−1
max
n=0

z1[m,n] (3.4-2)

Suppose that, initially, w1[m,n] = δ[m,n], i.e., w[0, 0] = 1 and w[m,n] = 0 for all other (m,n). The
maximization in Eq. (3.4-2) therefore picks out the maximum sample in the input signal, which is at position
(m∗, n∗):

(m∗, n∗) =
M−1

argmax
m=0

N−1
argmax

n=0
z1[m,n]

Suppose that the loss function is MSE, L = 1
2 (y− g(x))2, and suppose that the CNN is trained for one step

of gradient descent with a learning rate of η = 1:

w1[m,n]← w1[m,n]− ∂L
∂w[m,n]

After the one step of training shown above, what is w1[m,n]? Write your answer in terms of y, x, g(x),
δ[m,n], m∗, n∗, and any of the other variables that have been introduced in the problem statement.

Solution:
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Therefore

w1[m,n]← δ[m,n] + (y − g(x))x[m∗ −m,n∗ − n]

In other words, it is a copy of x[m,n], flipped and shifted by (m∗, n∗), scaled by the error term (y − g(x)),
and added to the original filter coefficients δ[m,n].


