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PRACTICE EXAM 3

Exam will be Friday, December 8, 2023, 1:30-4:30pm

• This will be a CLOSED BOOK exam.

• You will be permitted three sheets of handwritten notes, 8.5x11.

• Calculators and computers are not permitted.

• Don’t simplify explicit numerical expressions.

• If you’re taking the exam online, you will need to have your webcam turned on. Your exam will
appear on Gradescope at exactly 1:30pm; you will need to photograph and upload your answers
by exactly 4:30pm.

• There will be a total of 200 points in the exam. Each problem specifies its point total. Plan your
work accordingly.

• You must SHOW YOUR WORK to get full credit.

• This practice exam contains only material from the last third of the course. The actual exam
will contain 17% material from the first third, and 17% material from the second third, and 66%
material from the last third of the course, of the course.
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Linear Algebra: If A is tall and thin, with full column rank, then

A†b = argminv‖b−Av‖2 = (ATA)−1ATb

If A is short and fat, with full row rank, then

A† = AT (AAT )−1

Orthogonal projection of x onto the columns of A is x⊥ = AA†x. Orthogonal projection onto the rows
of A is x⊥ = A†Ax.
Image Interpolation

y[n1, n2] =

{
x
[
n1

U ,
n2

U

]
n1

U ,
n2

U both integers

0 otherwise
, z[n1, n2] = h[n1, n2] ∗ y[n1, n2]

hrect[n1, n2] =

{
1 0 ≤ n1, n2 < U

0 otherwise
, htri[n] =

{(
1− |n1|

U

)(
1− |n2|

U

)
−U ≤ n1, n2 ≤ U

0 otherwise

hsinc[n1, n2] =
sin(πn1/U)

πn1/U

sin(πn2/U)

πn2/U

Barycentric Coordinates x1
x2
1

 = β1x1 + β2x2 + β3x3 =

 x1,1 x1,2 x1,3
x2,1 x2,2 x2,3

1 1 1

 β1
β2
β3


DTFT, DFT, STFT, Griffin-Lim

X(ω) =
∑
n

x[n]e−jωn, x[n] =
1

2π

∫ π

−π
X(ω)ejωndω

X[k] =

N−1∑
n=0

x[n]e−j
2πkn
N , x[n] =

1

N

N−1∑
k=0

X[k]ej
2πkn
N

Xm(ω) =
∑
n

w[n−m]x[n]e−jω(n−m), x[n] =

∑
m

1
N

∑N−1
k=0 Xm

(
2πk
N

)
ej

2πk(n−m)
N∑

m w[n−m]

Xt(ω)← STFT {ISTFT {Xt(ω)}} , Xt(ω)←Mt(ω)ej∠Xt(ω)

Neural Nets

h
(`)
i,k = g(z

(`)
i,k), z

(`)
i,k = b

(`)
k +

p∑
j=1

w
(`)
k,jh

(`−1)
i,j

dL
dz

(`)
i,k

=
dL
dh

(`)
i,k

ġ(z
(`)
i,k), σ̇(x) = σ(x)(1− σ(x))

dL
dh

(`−1)
i,j

=
∑
k

dL
dz

(`)
i,k

w
(`)
k,j ,

dL
dw

(`)
k,j

=
∑
i

dL
dz

(`)
i,k

h
(`−1)
i,j
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Viola-Jones

II[m,n] =

m∑
m′=1

∑
n′=1n

I[m′, n′], 1 ≤ m ≤M, 1 ≤ n ≤ N

εt =
∑
i

wt(xi)|yi − ht(xi)|, wt+1(xi) = βtwt(xi), βt =
εt

1− εt

h(x) =

{
1
∑
t αtht(x) > 1

2

∑
t αt

0 otherwise
, αt = − lnβt

Hidden Markov Model

αt(j) =

N∑
i=1

αt−1(i)ai,jbj(xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T, α̂t(j) =

∑N
i=1 α̂t−1(i)ai,jbj(xt)∑N

j′=1

∑N
i=1 α̂t−1(i)ai,j′bj′(xt)

βt(i) =

N∑
j=1

ai,jbj(xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

γt(i) =
αt(i)βt(i)∑N
k=1 αt(k)βt(k)

, ξt(i, j) =
αt(i)ai,jbj(xt+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak,`b`(xt+1)βt+1(`)

a′i,j =

∑T−1
t=1 ξt(i, j)∑N

j=1

∑T−1
t=1 ξt(i, j)

, b′j(k) =

∑
t:xt=k

γt(j)∑T
t=1 γt(j)

Gaussians

pX(x) =
1

(2π)D/2|Σ|1/2
e−

1
2 (x−µ)

TΣ−1(x−µ)

µ′i =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

, Σ′i =

∑T
t=1 γt(i)(xt − µi)(xt − µi)T∑T

t=1 γt(i)

PCA

X = [x1 − µ, . . . ,xM − µ] , Σ =
1

M − 1
XXT

Σ = UΛUT , UTΣU = Λ, UTU = UUT = I, X = UΛ1/2V T

RNN and LSTM

dL
dh[n]

=
∂L
∂h[n]

+
∑
m

dL
dh[n+m]

∂h[n+m]

∂h[n]

i[t] = σg(wix[t]+uih[t−1]+ bi), o[t] = σg(wox[t]+uoh[t−1]+ bo), f [t] = σg(wfx[t]+ufh[t−1]+ bf )

c[t] = f [t]c[t− 1] + i[t]σh (wcx[t] + uch[t− 1] + bc) , h[t] = o[t]σh(c[t])
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1. (10 points) A particular dataset has the scatter matrix S =
∑n
k=1(xk −m)(xk −m)T , whose first

two eigenvectors are v1 and v2, characterized by eigenvalues λ1 = 450 and λ2 = 150. Define the
transform yk = [v1,v2]T (xk −m). Define the 2× 2 matrix

Q =

[
q11 q12
q21 q22

]
=

n∑
k=1

yky
T
k

Find the numerical values of the elements q11, q12, q21, and q22 of matrix Q.

2. (10 points) A particular dataset has six data vectors, given by

{x1, . . . ,x6} =


 1

0
0

 ,
 −1

0
0

 ,
 0

1
0

 ,
 0
−1
0

 ,
 0

0
1

 ,
 0

0
−1


By calling np.random.randn, you generate a 3× 2 random projection matrix V , given by

V =

 v11 v12
v21 v22
v31 v32


Using this random projection matrix, you compute the transformed feature vectors yk = V Txk.
The total energy of the transformed dataset can be written as

E =

6∑
k=1

yTk yk

Find the value of E in terms of the random projection matrix elements vij .
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3. (10 points) A particular dataset has three data,

x1 =


0
1
0
−1
0
0

 , x2 =


0
0
0
1
0
−1

 , x3 =


0
−1
0
0
0
1


Define X = [x1,x2,x3] and R = XTX. The matrix R is given by R = V ΛV T where

V =

 −
1√
6

1√
2

2√
6

0

− 1√
6
− 1√

2

 , Λ =

[
3 0
0 3

]

Find a matrix W such that yi = WTxi, yi is two-dimensional, and the elements of yi are uncorre-
lated.
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4. (10 points) As you know, in any given vector space, it’s possible to define an infinite number of
different Mahalanobis distances, parameterized by different covariance matrices. Consider the Ma-
halanobis distance measures da(~x, ~y) and db(~x, ~y), parameterized, respectively, by the covariance
matrices

Σa =


a1 0 . . . 0

0 a2 0
...

... 0 . . . 0
0 . . . 0 ad

 , Σb =


b1 0 . . . 0

0 b2 0
...

... 0 . . . 0
0 . . . 0 bd


Your friend Amit wishes to define a third dissimilarity measure, as

dc(~x, ~y) =

√
1

2
(d2a(~x, ~y) + d2b(~x, ~y))

Is dc(~x, ~y) a Mahalanobis distance? If so, find the elements of the covariance matrix Σc in terms of
the variables a1, . . . , ad, b1, . . . , bd. If not, demonstrate that no such covariance matrix exists.
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5. (10 points) Suppose that you haveM differentD-dimensional vectorized face images, xm = [x1m, . . . , xDm]T ,
whose mean is µ = [µ1, . . . , µD]T . Define the data matrix to be A = [x1 − µ, . . . ,xM − µ],
and suppose that the eigenvectors and eigenvalues of ATA are given by U = [u1, . . . ,uM ] and
Λ = diag(λ1, . . . , λM ).

(a) Find the numerical value of the vector UTu3.

(b) Your goal is to find a (D×M) matrix V = [v1, . . . ,vM ] so that ym = V T (xm −µ) is a vector
containing the first M principal components of the image xm. Write an equation showing how
V can be computed from µ, A, U , and/or Λ.

6. (10 points) Suppose that you haveM differentD-dimensional vectorized face images, xm = [x1m, . . . , xDm]T ,
whose mean is µ = [µ1, . . . , µD]T . Define the scatter matrix to be

S =

M∑
m=1

(xm − µ)(xm − µ)T

Suppose that the eigenvectors and eigenvalues of S are V = [v1, . . . ,vD] and Λ = diag(λ1, . . . , λD).
You want to find a value of K such that the K-dimensional PCA projection ym = [v1, . . . ,vK ]T (xm−
µ) has the following property:

M∑
m=1

‖ym‖2 = (0.95)

M∑
m=1

|xm − µ|2 (1)

Specify an equation that, if satisfied, will guarantee the truth of Eq. 1. Your equation should only
include the scalars M , D, K, and/or the eigenvalues λd (1 ≤ d ≤ D); your equation should not
include xm or µ.
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7. (10 points) Suppose you have a dataset including the vectors

x =

 1
0
3

 , y =

 2
0
3

 , z =

 1
1
2


Find a diagonal matrix Σ such that the Mahalanobis distance satisfies d2Σ(~x, ~y) > d2Σ(~x, ~z).

8. (10 points) Suppose that a particular covariance matrix Σ has the following eigenvector matrix, U ,
and eigenvalue matrix, Λ:

U =

√
2

2

[
1 1
1 −1

]
, Λ =

[
4 0
0 1

]
Let y(x) =

[
y1(x)
y2(x)

]
= UTx be the principal components of a vector space x.

(a) Plot the set of vectors x such that y1(x) = 3.

(b) Find the squared Mahalanobis distance, d2Σ(x,µ), between the vectors x and µ where

x =

[
5
5

]
, µ =

[
1
1

]
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9. (10 points) A 2-dimensional Gaussian random vector has mean µ and covariance Σ given by

µ =

[
1
1

]
, Σ =

[ √
2
2

√
2
2√

2
2 −

√
2
2

] [
8 0
0 2

][ √
2
2

√
2
2√

2
2 −

√
2
2

]

Draw a curve of some kind, on a two-dimensional Cartesian plane, showing the set of points{
x : pX(x) = 1

8π e
− 1

2

}
.
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10. (10 points) Consider a scalar LSTM, with a scalar memory cell, input gate, output gate, and forget
gate, related to one another by scalar coefficients ai, bi, ao, bo, af , bf , ac, bc as follows:

i[n] = input gate = σ(bix[n] + aic[n− 1]), 1 ≤ n
o[n] = output gate = σ(box[n] + aoc[n− 1]), 1 ≤ n
f [n] = forget gate = σ(bfx[n] + afc[n− 1]), 1 ≤ n
c[n] = f [n]c[n− 1] + i[n] (bcx[n] + acc[n− 1]) , 1 ≤ n
y[n] = o[n]c[n], 1 ≤ n

Suppose that the network is initialized with bi = bo = bf = ai = ao = af = ac = 0, and c[0] = 0. In
fact, the only nonzero coefficient is bc = 1. Under this condition, find a formula for y[n] in terms of
the values of x[m], 1 ≤ m ≤ n. No variables other than x[m] should appear in your answer. HINT:
σ(0) = 1/2.
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11. (10 points) Suppose you have an M ×D matrix, X = [x0, . . . ,xM−1]T , where
∑M−1
m=0 xm = 0. The

eigenvalues of XTX are λ0 through λD−1, its eigenvectors are v0 through vD−1, and its principal
components are Y = XV .

(a) Write Y TY in terms of the eigenvalues, λ0 through λD−1.

(b) Write
∑M−1
m=0 ‖xm‖22 in terms of the eigenvalues, λ0 through λD−1.

(c) Write vTi X
TXvj in terms of the eigenvalues, λ0 through λD−1, for 0 ≤ i ≤ j ≤ D − 1.
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12. (20 points) Suppose we’re trying to predict the sequence ζ1, . . . , ζ100 from the sequence x1, . . . , x100.
We want to use some type of neural net (RNN or LSTM) to compute z1, . . . , z100 in order to minimize
the error

E =
1

200

100∑
t=1

(zt − ζt)2

We only have one training sequence (x1, . . . , x100, ζ1, . . . , ζ100).

(a) Suppose we use an RNN (recurrent neural network) with just one scalar memory cell
whose weights and biases are w, u, and b:

zt = σ(uxt + wzt−1 + b)

Find the derivatives of the error with respect to the weights and biases (dE/du, dE/dw, and
dE/db). Express your answers in terms of xj , zk, and ζk for appropriate values of k and j;
the terms u, w and b should not show up on the right-hand-side of any of your
equations. You may express your answer recursively, or your answer may contain summation
(
∑

) and/or product (
∏

) terms.

(b) Suppose we use an LSTM (long-short-term memory network) whose weights and biases
are pre-specified: uc = 1, and all of the other weights and biases are zero:

bc = 0, uc = 1, wc = 0, bf = 0, uf = 0, wf = 0, bi = 0, ui = 0, wi = 0, bo = 0, uo = 0, wo = 0

f [t] = σ(ufxt + wfzt−1 + bf ), i[t] = σ(uixt + wizt−1 + bi), o[t] = σ(uoxt + wozt−1 + bo)

c[t] = f [t]c[t− 1] + i[t]σ (ucxt + wczt−1 + bc) , zt = o[t]c[t]

Assume that c[t] = 0 for t ≤ 0. Express zt in terms of σ(xt) for 0 ≤ t ≤ 100. Your answer
should NOT contain any of the variables c[t], f [t], i[t], or o[t]. Your answer may
contain a summation (

∑
). You may find it useful to know that σ(0) = 1

2 .

Page 12



13. (30 points) A particular unlabeled dataset, D = {x1, . . . ,xn} has been centered so that the sample
mean is µ = [0, 0]T . The sample covariance matrix, Σ has the following value, and the following
eigenvalue decomposition:

Σ =

[
4 −2
−2 5

]
=

[
−0.79 0.62
−0.62 −0.79

] [
2.44 0

0 6.56

] [
−0.79 −0.62
0.62 −0.79

]
Suppose you want to find a unit-length vector v that makes the quantity J , defined in the following
equation, as large as possible:

v = argmaxJ s.t. ‖v‖ = 1 and J =

∑n
i=1(vTxi)

2∑n
i=1 ‖xi‖2

(a) What is the numerical value of v that maximizes J ? You may leave your answer as an explicit
function of numerical quantities, if you wish.

(b) What is the maximum achievable numerical value of J ? You may leave your answer as an
explicit function of numerical quantities, if you wish.

(c) The gram matrix is an n× n matrix, G, whose (i, j)th element is

G[i, j] = xTi xj

In terms of n, what are the eigenvalues of G?
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14. (10 points) The gram matrix of a dataset is the matrix whose (i, j)th element is xTi xj , the inner prod-
uct of xi and xj . A particular dataset has a gram matrix with the following eigenvector/eigenvalue
decomposition:

G =


−0.19 −0.22
−0.33 −0.49
−0.52 0.15
−0.34 0.77
−0.68 −0.29
0.04 −0.04


[

20 0
0 45

] [
−0.19 −0.33 −0.52 −0.34 −0.68 0.04
−0.22 −0.49 0.15 0.77 −0.29 −0.04

]

Suppose that Σ is the sample covariance of the same dataset, and suppose that Σ =

[
σ2
1 0

0 σ2
2

]
.

Draw the set of points {x : xTΣ−1x = 1}. Specify the numerical value of the coordinate of every
point where this set intersects the axes.
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15. (10 points) Suppose you are studying the running behaviors of trained vs. untrained athletes. You
have a sequence of feature vectors xt, where t is time (measured in centiseconds) and xt is a vector
of features computed from a motion sensor being worn at the ankle. You have trained a neural
network to compute bj(xt) = p(xt|qt = j), where qt ∈ {1 = heel strike, 2 = roll, 3 = lift, 4 = swing}
denotes the gait phase. You also know the following probabilities:

ai,j = p(qt = j|qt−1 = i)

αt(i) = p(x1, . . . ,xt, qt = i)

βt(i) = p(xt+1, . . . ,xT |qt = i)

Your goal is to identify all of the instants when the heel first touches the ground, i.e., at each time
step τ (1 ≤ τ ≤ T ), you want to find

PHS(τ) = p(qτ−1 = 4, qτ = 1|x1, . . . ,xT )

Write a formula for PHS(τ) in terms of αt(i), βt(i), ai,j , and bi(xt), for any values of i, j, t that you
find useful.

16. (17 points) In a neural network with residual connections (ResNet), the kth activation at layer `,

h
(`)
k , is equal to the activation of the same node at the previous layer, plus a computed residual

g(ξ
(`)
k ):

ξ
(`)
k =

N∑
j=1

w
(`)
k,jh

(`−1)
j , 1 ≤ k ≤ N,

h
(`)
k = h

(`−1)
k + g

(
ξ
(`)
k

)
, 1 ≤ k ≤ N,

where g(·) is a scalar nonlinearity, and w
(`)
k,j is a network weight. Suppose that the training loss is

L, and suppose you already know dL
dh

(`)
k

. Find dL
dh

(`−1)
j

in terms of dL
dh

(`)
k

, ġ(ξ) = ∂g

∂ξ
(`)
k

, and w
(`)
k,j .
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17. (17 points) Suppose we have five variables, u, v, w, x, y. All but seven of their partial derivatives are
zero; for example, ∂y∂u (u, v, w, x, y) = ∂y

∂x (u, v, w, x, y) = 0. The only seven nonzero partial derivatives
are

∂u

∂x
(u, v, w, x, y) = a,

∂v

∂x
(u, v, w, x, y) = b

∂w

∂u
(u, v, w, x, y) = c,

∂w

∂v
(u, v, w, x, y) = d

∂w

∂x
(u, v, w, x, y) = e,

∂y

∂v
(u, v, w, x, y) = f

∂y

∂w
(u, v, w, x, y) = g,

In terms of the constants a, b, c, d, e, f , and g, find ∇ x
u

y, the gradient of y with respect to the

vector [x, u]T .
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18. (30 points) Consider a bidirectional two-layer recurrent network that has been trained to perform
the following computations.

• The first layer has forward and backward cells which perform the following computations given
an input x ∈ < and prior hidden states f ∈ <, b ∈ <:

forward : ft = sin(xtwx + ft−1wh + b)2,

backward : bt = sin(xtwx + bt+1wh + b)2,

where the weights are wx = π
4 , wh = π

2 , and b = π
2 .

• The second layer has forward and backward cells which perform the following computations
given an input ξ ∈ <2 and a prior hidden states y ∈ <, z ∈ <:

forward : yt = cos
(π

2
(wT

x ξt + whyt−1 + b)
)
,

backward : zt = cos
(π

2
(wT

x ξt + whzt+1 + b)
)
,

where the weights are wx = [2, 1]T , wh = 2, and b = 1. Assume that the prior hidden state,
before each cell reads its first input, is 0.

(a) Consider the input sequence [x1, x2, x3] = [4, 1, 7]. What are the forward outputs [f1, f2, f3]
and the backward outputs [b3, b2, b1] from the first layer?

(b) Now consider the outputs [f1, f2, f3] = [3, 1, 3] from the forward cell in the first layer and the
outputs [b3, b2, b1] = [3, 1, 0] from the backward cell in the first layer. Let ξt = [ft, bt]

T . What
are the forward outputs [y1, y2, y3] and the backward outputs [z3, z2, z1] from the second layer?
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19. (20 points) Consider an LSTM defined by

i[n] = input gate = σ(Bix[n] +Aic[n− 1])

o[n] = output gate = σ(Box[n] +Aoc[n− 1])

f [n] = forget gate = σ(Bfx[n] +Afc[n− 1])

c[n] = f [n]� c[n− 1] + i[n]� g (Bcx[n] +Acc[n− 1])

y[n] = o[n]� c[n]

where the vector cell is c[n] = [c1[n], . . . , cp[n]]T , and where� denotes the Hadamard (array) product,

e.g., o[n]� c[n] = [o1[n]c1[n], . . . , op[n]cp[n]]T . Find the derivative
∂cj [n]

∂ck[n−1] .
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