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Viola-Jones

II[m,n] =

m∑
m′=1

∑
n′=1n

I[m′, n′], 1 ≤ m ≤M, 1 ≤ n ≤ N

εt =
∑
i

wt(xi)|yi − ht(xi)|, wt+1(xi) = βtwt(xi), βt =
εt

1− εt

h(x) =

{
1
∑
t αtht(x) > 1

2

∑
t αt

0 otherwise
, αt = − lnβt

Hidden Markov Model

αt(j) =

N∑
i=1

αt−1(i)ai,jbj(xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T, α̂t(j) =

∑N
i=1 α̂t−1(i)ai,jbj(xt)∑N

j′=1

∑N
i=1 α̂t−1(i)ai,j′bj′(xt)

βt(i) =

N∑
j=1

ai,jbj(xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

γt(i) =
αt(i)βt(i)∑N
k=1 αt(k)βt(k)

, ξt(i, j) =
αt(i)ai,jbj(xt+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak,`b`(xt+1)βt+1(`)

a′i,j =

∑T−1
t=1 ξt(i, j)∑N

j=1

∑T−1
t=1 ξt(i, j)

, b′j(k) =

∑
t:xt=k

γt(j)∑T
t=1 γt(j)

Gaussians

pX(x) =
1

(2π)D/2|Σ|1/2
e−

1
2 (x−µ)T Σ−1(x−µ)

µ′i =

∑T
t=1 γt(i)xt∑T
t=1 γt(i)

, Σ′i =

∑T
t=1 γt(i)(xt − µi)(xt − µi)T∑T

t=1 γt(i)
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1. (10 points) Good days and bad days follow each other with the following probabilities:
qt−1 p(qt = G|qt−1 = ·) p(qt = B|qt−1 = ·)
G 0.7 0.3
B 0.4 0.6

In winter in Champaign, the temperature on a good day is Gassian with mean µG = 50, σG = 20.
The temperature on a bad day is Gaussian with mean µB = 10, σG = 20. A particular sequence of
days has temperatures

{x1 = 10, x2 = 20, x3 = 30}

What is the probability p(X|q1 = B), the probability of seeing this sequence of temperatures given
that the first day was a bad day?

Solution:

p(X|q1 = B) =

(
1

50

)(
1

20

)(
1

20

)(
6

25

)
((0.6)(0.35)(0.6) + (0.4)(0.13)(0.3) + (0.6)(0.35)(0.4) + (0.4)(0.13)(0.7))
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2. (20 points) Suppose that

aij = p(qt = j|qt−1 = i)

bj(xt) = p(xt|qt = j)

gt = p(xt|x1, . . . , xt−1)

And define the scaled forward algorithm to compute

α̃t(i) = p(qt = i|x1, . . . , xt) =
p(xt, qt = i|x1, . . . , xt−1)

gt
=
p(x1, . . . , xt, qt = i)

g1g2 . . . gt

(a) Devise an algorithm to iteratively compute gt and α̃t(i). Fill in the right-hand side of each
equation, using only the terms ajk, bj(xτ ), gτ , and α̃τ (j) for 1 ≤ j ≤ N , 1 ≤ k ≤ N , 1 ≤ τ ≤ t.

1. INITIALIZE: g1 =

2. INITIALIZE: α̃1(i) =

3. ITERATE: gt =

4. ITERATE: α̃t(i) =

5. TERMINATE: p(X) =

Solution:

1. INITIALIZE: g1 =
∑N
j=1 πjbj(x1)

2. INITIALIZE: α̃1(i) = πibi(x1)
g1

3. ITERATE: gt =
∑N
i=1

∑N
j=1 α̃t−1(i)aijbj(xt)

4. ITERATE: α̃t(i) =
∑N

j=1 α̃t−1(i)aijbj(xt)

gt

5. TERMINATE: p(X) =
∏T
t=1 gt

(b) Suppose βt(i) = p(xt+1, . . . , xT |qt = i). Then

α̃t(i)βt(i) = p(f |g)

for some list of variables f , and some other list of variables g. Specify what variables should be
included in each of these two lists.

Solution:
f = {qt = i, xt+1, . . . , xT }

g = {x1, . . . , xt}
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3. (10 points) You are creating a recommender system that tries to recommend songs that will be
considered to be similar to a given query. Each song is characterized by a two-dimensional vector
xk = [bk, vk]T where bk is the number of beats per minute, and vk is the fraction of air-time during
which there is a human voice. Your customer considers the following four songs to be similar:

[x1,x2,x3,x4] =

[
120 140 140 120
0.3 0.3 0.5 0.5

]
You are given two more test data, x5 = [b5, v5]T and x6 = [b6, v6]T , and you are asked whether or
not x5 and x6 should be considered similar.

Estimate a diagonal data covariance matrix directly from the data, and use it to write the squared
Mahalanobis distance d2

Σ(x5,x6).

Solution:

d2
Σ(x5,x6) =

(b5 − b6)2

100
+

(v5 − v6)2

0.01
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4. (10 points) The stock market alternates between long bull markets (state 1) and short bear markets
(state 2). This HMM has the following parameters:

π =

[
1
0

]
, A =

[
0.999 0.001
0.005 0.995

]
, µ1 = 0.1, µ2 = −0.3, σ2

1 = σ2
2 = 1,

where πi = p(q1 = i), aij = p(qt+1 = j|qt = i), and p(xt|qt = j) = N (xt;µj , σ
2
j ).

You observe x2 on day 2.

For what values of x2 does the forward algorithm yield probabilities αt(i) such that α2(2) > α2(1)?

Asking exactly the same question in different words: for what values of x2 would it be rational to
conclude that a bear market has started?

Solution: x2 < −0.1− 2.5 ln(999)
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5. (10 points) As you know, in any given vector space, it’s possible to define an infinite number of
different Mahalanobis distances. Consider the Mahalanobis distance measures da(x,y) and db(x,y),
parameterized, respectively, by the covariance matrices

Σa =


a1 0 . . . 0

0 a2 0
...

... 0 . . . 0
0 . . . 0 ad

 , Σb =


b1 0 . . . 0

0 b2 0
...

... 0 . . . 0
0 . . . 0 bd


Your friend Amit wishes to define a third dissimilarity measure, as

dc(x,y) =

√
1

2
(d2
a(x,y) + d2

b(x,y))

Is dc(x,y) a Mahalanobis distance? If so, find the elements of the covariance matrix Σc in terms of
the variables a1, . . . , ad, b1, . . . , bd. If not, demonstrate that no such covariance matrix exists.

Solution:

d2
c(x,y) =

1

2

(
d2
a(x,y) + d2

b(x,y)
)

=

d∑
i=1

1

2

(
(xi − yi)2

ai
+

(xi − yi)2

bi

)

=

d∑
i=1

1

2

(
(bi + ai)(xi − yi)2

aibi

)
This is a Mahalanobis distance with a covariance matrix Σc whose diagonal elements are

ci =
aibi
ai + bc
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6. (10 points) You want to classify zoo animals. Your zoo only has two species: elephants and giraffes.
There are more elephants than giraffes: if Y is the species,

pY (elephant) =
e

e+ 1

pY (giraffe) =
1

e+ 1

where e = 2.718 . . . is the base of the natural logarithm. The height of giraffes is Gaussian, with
mean µG = 5 meters and variance σ2

G = 1. The height of elephants is also Gaussian, with mean
µE = 3 and variance σ2

E = 1. Under these circumstances, the minimum probability of error classifier
is

ŷ(x) =

{
giraffe x > θ
elephant x < θ

Find the value of θ that minimizes the probability of error.

Solution:

pY |X

(
1|
[
x10

0

])
=


0 x10 <

3
4

1
3

3
4 < x10 < 3

2
3 3 < x10 <

13
4

1 13
4 < x10
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7. (10 points) A particular hidden Markov model is parameterized by λ = {πi, aij , bj(x)} where πi is
uniform (πi = 1

N ). Devise an algorithm to compute p(q1 = k|x1, . . . ,xT , λ).

Solution: This is solved by the forward-backward algorithm:

α1(j) = πjbj(x1), 1 ≤ j ≤ N

βT (i) = 1, 1 ≤ j ≤ N

βt(i) =

N∑
j=1

aijbj(xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

p(q1 = k|x1, . . . ,xT ) =
α1(k)β1(k)∑N

k′=1 α1(k′)β1(k′)
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8. (10 points) The scaled forward algorithm is provided for you on the formula page at the beginning
of this exam. In terms of the quantities πi, aij , bj(x), and/or α̂t(j), gt, find a formula for the quantity
p(qt−1 = i, qt = j,xt−1,xt|x1, . . . ,xt−2, λ).

Solution:

p(qt−1 = i, qt = j,xt−1,xt|x1, . . . ,xt−2, λ) =

N∑
k=1

α̂t−2(k)akibi(xt−1)aijbj(xt)
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9. (10 points) Your training database contains matched pairs {(x1,y1), . . . , (xn,yn)} where xi is the ith

observation vector, and yi is the ith label vector. For some initial weight matrix W =

[
w11 . . .
. . . wqp

]
,

you have already computed the following two quantities:

f`(xi,W) 1 ≤ ` ≤ r, 1 ≤ i ≤ n (1)

∂f`(xi,W)

∂wkj
1 ≤ ` ≤ r, 1 ≤ k ≤ q, 1 ≤ j ≤ p, 1 ≤ i ≤ n (2)

You want to find a new matrix W′ =

[
w′11 . . .
. . . w′qp

]
such that J (W′) ≥ J (W) (that is, you want

to maximize J ), where

J (W) =

n∑
i=1

r∑
`=1

y`r ln (f`(xi,W ))

Give a formula for w′kj in terms of wkj , f`(xi,W), ∂f`(xi,W)
∂wkj

, and in terms of a step size, η, such

that for suitable values of η, J (W′) ≥ J (W).

Solution:

w′k,j = wk,j + η

n∑
i=1

r∑
`=1

y`,r
f`(xi,W)

∂f`(xi,W)

∂wk,j
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10. (10 points) An integral image is computed from image i(x, y) according to

ii(x, y) =
∑
x′≤x

∑
y′≤y

i(x′, y′)

You want to compute the following feature:

f(i) =

200∑
y=101

(
100∑
x=51

i(x, y)−
150∑

x=101

i(x, y) +

200∑
x=151

i(x, y)

)

Suppose that ii(x, y) has already been computed. Find a formula for f(i), in terms of i(x, y) and/or
ii(x, y), that requires no more than seven additions (a sum with no more than eight terms).

Solution:

f(i) = ii(200, 200)− 2ii(150, 200) + 2ii(100, 200)− ii(50, 200)

− ii(200, 100) + 2ii(150, 100)− 2ii(100, 100) + ii(50, 100)
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11. (10 points)
Sun Tzu is surrounded by 12 armies. If Sun Tzu’s position is (0, 0), the position of the ith army is
given by (cosφi, sinφi), where

{φ1, . . . , φ12} =

{
−π

8
, 0,

π

4
,

3π

8
,
π

2
,
π

8
,

3π

4
, π,−3π

4
,−5π

8
,−π

2
,−3π

8

}
The armies shown as circles, in the figure above, are allies; those shown as squares are enemies. Let’s
label allies as yi = 0, and enemies as yi = 1, so that

{y1, . . . , y12} = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1}

Sun Tzu has two tripod-mounted motion detectors, called h1(φ) and h2(φ). Each motion detector
outputs a 1 whenever an army in its field of view moves. The field of view is exatly π radians,
therefore if the army at φi moves, and if the tth motion director is pointed in the direction θt, then

ht(φi) =

{
1 cos(θt − φi) > 0
0 cos(θt − φi) ≤ 0

Unfortunately, when a motion detector goes off, there’s no way to tell which of the armies in its field
of view has moved. Sun Tzu therefore wants to average the motion detectors in such a way that the
average output is positive if and only if an enemy army moves. In other words, the goal is to find
θ1, θ2, α1 and α2 in order to maximize the number of armies for which sign(h(x)) = sign(2yi − 1),
where

h(x) =

2∑
t=1

αt (2ht(φi)− 1) (3)

Use the AdaBoost algorithm to find values of θ1, θ2, α1 and α2 that maximize the accuracy of Eq. 3.
(Note: θ1 and θ2 should be real-valued fractions of π; α1 and α2 should each be the logarithm of a
real number.)

Solution: The best single classifier is at θ1 = − 7π
8 , with an error rate of only ε1 = 1

12 , therefore
β1 = ε1

1−ε1 = 1
11 and α1 = ln(11).

After finding the best classifier, we multiply all of the tokens it correctly classified by β1, then
renormalize the weights so they add up to one, giving w2,6 = 1

2 for the token at φ6 = π
8 ,

and w2,i = 1
22 for all of the other 11 tokens. The best classifier is now the one that correctly

classifies φ6 while also correctly classifying as many other tokens as possible; this is the classifier
θ2 = − 5π

16 , which only makes 4 mistakes, thus ε2 = 4
22 = 2

11 , β2 = ε2
1−ε2 = 2

9 , and α2 = ln(9/2).
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12. (10 points) Suppose you have a dataset including the vectors

x =

 1
0
3

 , y =

 2
0
3

 , z =

 1
1
2


Find a diagonal matrix Σ such that d2

Σ(x,y) > d2
Σ(x, z).

Solution: Any solution such that 1
σ2
1
> 1

σ2
2

+ 1
σ2
3
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13. (20 points) Define Φ(z) as follows:

Φ(z) =

∫ z

−∞

1√
2π
e−

1
2u

2

du

Suppose X = [X1, X2]T is a Gaussian random vector with mean and covariance given by

µ =

[
1
0

]
, Σ =

[
9 0
0 4

]
(a) Sketch the set of points such that fX(x) = 1

12π e
− 1

8 , where fX(x) is the pdf of X.

Solution: The sketch should show an ellipse with axes parallel to the main axes, passing
through the points ( 5

2 , 0), (− 1
2 , 0), (1, 1), and (1,−1).

(b) In terms of Φ(z), find the probability Pr {−1 < X1 < 1,−1 < X2 < 1}.

Solution: (Φ(0)− Φ(− 2
3 ))(Φ( 1

2 )− Φ(− 1
2 ))
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14. (10 points) Suppose that, for a particular classification problem, the correct label of every data
point is as follows:

y∗(x) =

{
1 ‖x‖2 < 1.5
0 ‖x‖2 > 1.5

(4)

Unfortunately, you aren’t allowed to use the correct labeling function. Instead, you have to try to
learn a Bayesian classifier. Suppose that fX|Y (x|0) and fX|Y (x|1) are both zero-mean Gaussian
pdfs, with the covariance matrices Σ0 and Σ1 respectfully, where

Σ0 =

[
1 0
0 1

]
, Σ1 =

[
2 0
0 2

]
Define η to be the ratio of the class prior probabilities, η = pY (0)/pY (1). Find a value of η such
that a Bayesian classifier gives exactly the decision boundary shown in Eq. (4).

Solution: η = 1
2e

9/16
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15. (10 points) A particular two-layer neural network accepts a two-dimensional input vector x =
[x1, x2, 1]T , and generates an output z = h(vT g(Ux)). Choose network weights v and U , and
element-wise scalar nonlinearities h() and g(), that will generate the following output:

z =

{
1 |x1| < 2 and |x2| < 2
−1 otherwise

Solution: There are many solutions. One possibility is:

U =


−1 0 2
1 0 2
0 −1 2
0 1 2


g(x) = u(x)

vT = [1, 1, 1, 1]

h(z) =

{
1 z ≥ 4

0 otherwise
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16. (20 points) A bimodal HMM uses a common state sequence, Q = [q1, . . . , qT ], to explain two different
observation sequences X = [x1, . . . ,xT ] and Y = [y1, . . . ,yT ]. The HMM is parameterized by

πi = p(q1 = i)

aij = p(qt = j|qt−1 = i)

bj(xt) = pX(xt|qt = j)

cj(yt) = pY (yt|qt = j)

Define

αt(i) = p(x1,y1, . . . ,xt,yt, qt = i)

βt(i) = p(xt+1,yt+1, . . . ,xT ,yT |qt = i)

(a) Specify initialization formulas for α1(i) and βT (i) in terms of πi, aij , bj(xt), and cj(yt).

Solution:

α1(i) = πibi(x1)ci(y1), 1 ≤ i ≤ N
βT (i) = 1, 1 ≤ i ≤ N

(b) Specify iteration formulas for αt(i) and βt(i) in terms of πi, aij , bj(xt), cj(xt), αt−1(j), and
βt+1(j).

Solution:

αt(j) =

N∑
i=1

αt−1(i)ai,jbj(xt)cj(yt), 1 ≤ j ≤ N

βt(i) =

N∑
j=1

ai,jbj(xt+1)cj(yt+1)βt+1(j), 1 ≤ i ≤ N
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17. (10 points) Suppose that you have a training database with three training vectors x1, x2, and x3

whose correct labels are y1, y2, and y3. You also have a set of three weak classifiers h1, h2, and h3,
each of which is right for exactly two of the three training tokens, as follows:

ht(xi) =

{
yi i 6= t
incorrect i = t

Adaboost begins with the weights w1,i = 1
3 , and runs for three iterations, resulting in the strong

classifier

H(x) =

3∑
t=1

αtht(x)

You may assume that the weak classifiers are selected in order: h1 is selected in the first iteration
of Adaboost, h2 in the second iteration, and h3 in the third iteration. Find α1, α2, and α3.

Solution: The first error is ε1 = 1
3 , so the two correct tokens are multiplied by β1 = ε1

1−ε1 = 1
2 ,

then the whole weight vector is renormalized to sum to one, so that

w̃T
2 =

[
1,

1

2
,

1

2

]
wT

2 =

[
1

2
,

1

4
,

1

4

]
The second error is therefore ε2 = 1

4 , so the two correct tokens are multiplied by β2 = ε2
1−ε2 = 1

3
giving

w̃T
3 =

[
1

6
,

1

4
,

1

12

]
wT

3 =

[
1

3
,

1

2
,

1

6

]
The third error is therefore ε3 = 1

6 , and therefore β3 = ε3
1−ε3 = 1

5 . The alphas are therefore

α1 = ln(2)

α2 = ln(3)

α3 = ln(5)
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18. (10 points) In terms of αt(i), βt(i), aij , πi and bi(xt), find

p (q6 = i, q7 = j|x1, . . . ,x20)

Solution:

p(q6 = i, q7 = j,x1, . . . ,x20) = p(x1, . . . ,x6, q6 = i)p(q7 = j|q6 = i)p(x7|q7 = j)p(x8, . . . ,x20|q7 = j)

= α6(i)aijbj(x7)β7(j)

p (q6 = i, q7 = j|x1, . . . ,x20) =
α6(i)aijbj(x7)β7(j)∑N

k=1

∑N
`=1 α6(k)ak`b`(x7)β7(`)
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19. (10 points) A particular HMM-based speech recognizer only knows two words: word w0, and word
w1. Word w0 has a higher a priori probability: pY (w0) = 0.7, while pY (w1) = 0.3. Each of the
two words is modeled by a four-state Gaussian HMM (N = 4) with three-dimensional observations
(D = 3). All states, in both HMMs, have identity covariance (Σi = I). Both HMMs have exactly
the same transition probabilities and state-dependent means, given by:

Both Words: A =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

 , µ1 =

 0
0
0

 , µ2 =

 1
1
1

 , µ3 =

 1
−1
−1

 , µ4 =

 −1
−1
1


But the initial residence probabilities are different:

Word 0: πi =

{
1 i = 1
0 otherwise

Word 1: πi =

{
1 i = 4
0 otherwise

Suppose that you have a two-frame observation, X = [x1,x2], where xt = [x1t, x2t, x
T
3t]. The MAP

decision rule, in this case, can be written as a linear classifier,

ŷ =

{
w1 wT

1 x1 + wT
2 x2 + b > 0

w0 otherwise

Find w1, w2, and b.

Solution: The Bayesian classifier chooses w1 if

p(w0)p(X|w0) < p(w1)p(X|w1)

0.7N (x1|µ1)
∑
j

a1jN (x2|µj) < 0.3N (x4|µ4)
∑
j

a4jN (x2|µj)

0.7N (x1|µ1) < 0.3N (x1|µ4)

ln(0.7)− 1

2
(x1 − µ1)T (x1 − µ1) < ln(0.3)− 1

2
(x1 − µ4)T (x1 − µ4)

ln(0.7)− 1

2
‖x1‖2 < ln(0.3)− 1

2
‖x1‖2 + µT4 x1 −

1

2
‖µ4‖2

Which is satisfied if

µT4 x1 + ln

(
3

7

)
− 3

2
> 0

So

w1 =

 −1
−1
1

 , w2 =

 0
0
0

 , b = ln

(
3

7

)
− 3

2
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20. (10 points) In class, we have been working with the exponential softmax function, but other forms
exist. For example, the polynomial softmax function transforms inputs b` into outputs z` according
to

z` =
bp`∑
k b

p
k

,

for some constant integer power, p. The cross-entropy loss is

E = −
∑
`

ζ` ln z`, ζ` =

{
1 ` = `∗

0 otherwise

Find ∂E
∂bj

for all j.

Solution:

∂E

∂bj
= −

∑
`

ζ`
z`

(
pbp−1
j δj`∑
k b

p
k

−
pbp`b

p−1
j

(
∑
k b

p
k)

2

)
= −

∑
`

p

bj
ζ` (δj` − zj)

= − p

bj
(δj`∗ − zj) = − p

bj
(ζj − zj)
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21. (10 points) Suppose you have a 10-pixel input image, x[n]. This is processed by a one-pixel “con-
volution” (really just multiplication by a scalar coefficient, w), followed by a stride-2 max pooling
layer, thus:

a[n] = wx[n], 1 ≤ n ≤ 10

y[k] = max

(
0, max

2k−1≤n≤2k
a[n]

)
, 1 ≤ k ≤ 5

Suppose you know the input x[n], and you know ε[k] = ∂E
∂y[k] . Find ∂E

∂w in terms of x[n] and ε[k].

Solution:
∂E

∂w
=

5∑
k=1

ε[k]x

[
argmax

2k−1≤n≤2k
a[n]

]
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22. (10 points) Suppose that you have a training dataset with n training tokens {(x1, ζ1), . . . , (xn, ζn)},
where xi = [xi1, . . . , xip]

T , and ζi ∈ {0, 1}. You have a one-layer neural network that tries to
approximate ζi with zi, computed as zi = σ

(
wTxi

)
, where σ(·) is the logistic function, and w is a

weight vector. Suppose that you want to maximize the accuracy of zi, but you also want to make
wTxi as small as possible. One way to do this is by using a two-part error metric,

E = − 1

n

n∑
i=1

(ζi ln zi + (1− ζi) ln(1− zi)) +
1

2n

n∑
i=1

(
wTxi

)2
Find ∇wE, the gradient of E with respect to w.

Solution:

∇wE =
1

n

n∑
i=1

(
(1− ζi)zi − ζi(1− zi) + wTxi

)
xTi
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23. (20 points) An HMM has initial-value probabilities πi = p(s1 = i), transition probabilities aij =
p(st+1 = j|st = i), and observation probabilities bj(xt) = p(xt|st = j). The forward algorithm is
defined as

α1(i) = πibi(x1), 1 ≤ i ≤ N (5)

αt+1(j) =

N∑
i=1

αt(i)aijbj(xt+1), 1 ≤ i, j ≤ N, 1 ≤ t ≤ T − 1 (6)

The Viterbi algorithm is defined as

δ1(i) = πibi(x1), 1 ≤ i ≤ N (7)

δt+1(j) =
N

max
i=1

δt(i)aijbj(xt+1), 1 ≤ i, j ≤ N, 1 ≤ t ≤ T − 1 (8)

Assume that aij = 0 for all values of i except i = j and i = j − 1.

(a) Prove that, for any particular value of t, the following implication is true:

δt(i) ≤ αt(i) ∀i ∈ {1, . . . , N} ⇒ δt+1(j) ≤ αt+1(j) ∀j ∈ {1, . . . , N} (9)

Solution:

δt+1(j) =
N

max
i=1

δt(i)aijbj(xt+1)

≤
N∑
i=1

δt(i)aijbj(xt+1)

≤
N∑
i=1

αt(i)aijbj(xt+1)

= αt+1(j)

(b) Prove that p(X) ≥ maxS p(X,S), where X = [x1, . . . ,xT ], and S = [s1, . . . , sT ]. You may
prove this by induction using Eq. 9, or from first principles.

Solution:

p(X,S) =
N

max
i=1

δT (i)

≤
N∑
i=1

δT (i)

≤
N∑
i=1

αT (i)

= p(X)

The argument from first principles simply notes that

p(X) =
∑
S

p(X,S)

≥ p(X,S)
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24. (10 points) You are given the integral image ii[n1, n2], defined in terms of the image i[n1, n2] as

ii[n1, n2] =

n1∑
m1=0

n2∑
m2=0

i[m1,m2]

Write an equation that computes the complementary integral image, c[n1, n2], in a small constant
number of operations per output pixel, where

c[n1, n2] =

N1−1∑
m1=n1

N2−1∑
m2=n2

i[m1,m2]

Solution:

c[n1, n2] =

N1−1∑
m1=0

N2−1∑
m2=0

i[m1,m2]−
n1−1∑
m1=0

N2−1∑
m2=0

i[m1,m2]−
N1−1∑
m1=0

n2−1∑
m2=0

i[m1,m2] +

n1−1∑
m1=0

n2−1∑
m2=0

i[m1,m2]

= ii[N1 − 1, N2 − 1]− ii[n1 − 1, N2 − 1]− ii[N1 − 1, n2 − 1] + ii[n1 − 1, n2 − 1]
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25. (30 points) The Maesters of the Citadel need to determine when winter starts. The temperature on
day t is xt. The state of day t is either qt = 0 (Autumn) or qt = 1 (Winter). Nobody really knows
how cold this winter will be or how long it will last, but the Maesters have created an initial model
Λ = {aij , bj(x)} where aij ≡ p(qt = j|qt−1 = i) and bj(x) ≡ p(xt = x|qt = j).

(a) Suppose we have a particular three day sequence of measurements, x1, x2, and x3. Given that
the preceding day was still autumn (q0 = 0), we want to determine the joint probability that
it continued to be autumn for days 1, 2, and 3, and that the three observed temperatures were
measured. In other words, we want an estimate of

G1 = p(q1 = 0, x1, q2 = 0, x2, q3 = 0, x3|q0 = 0,Λ)

Find G1 in terms of aij and bj(xt), for whatever particular values of i, j, and t are most useful
to you.

Solution:
G1 = a3

00b0(x1)b0(x2)b0(x3)

(b) Suppose it is known that the preceding day was still autumn (q0 = 0). Now, on day 1, the
Maesters have determined that the temperature is x1. Find the conditional probability, given
this measurement, that it is still autumn, i.e., find

G2 = p(q1 = 0|x1, q0 = 0,Λ)

Find G2 in terms of aij and bj(xt), for whatever particular values of i, j, and t are most useful
to you.

Solution:

G2 =
p(q1 = 0, x1|q0 = 0,Λ)∑
i p(q1 = i, x1|q0 = 0,Λ)

=
a00b0(x1)

a00b0(x1) + a01b1(x1)

(c) The Maesters have collected a long series of measurements, {x1, . . . , xT } for T consecutive days.
From these measurements, the Maesters have applied the forward-backward algorithm in order
to calculate the following two quantities:

αt(i) ≡ p(x1, . . . , xt, qt = i|Λ), βt(i) ≡ p(xt+1, . . . , xT |qt = i,Λ)

Using these quantities, the Maesters wish to calculate the probability that Winter started on a
particular day, t = w. That is, they wish to find

G3 = p(qw−1 = 0, qw = 1|x1, . . . , xT ,Λ)

Find G3 in terms of αt(i), βt(i), aij and bj(xt), for whatever particular values of i, j, and t are
most useful to you.

Solution:

G3 =
p(qw−1 = 0, qw = 1, x1, . . . , xT |Λ)∑
i

∑
j p(qw−1 = i, qw = j, x1, . . . , xT |Λ)

=
αw−1(0)a01b1(xw)βw(1)∑
i

∑
j αw−1(i)aijbj(xw)βw(j)
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26. (20 points) Suppose we’re trying to predict the sequence ζ1, . . . , ζ100 from the sequence x1, . . . , x100.
We want to use some type of neural net (fully-connected or CNN) to compute z1, . . . , z100 in order
to minimize the error

E =
1

200

100∑
t=1

(zt − ζt)2

We only have one training sequence (x1, . . . , x100, ζ1, . . . , ζ100).

(a) Suppose we use a fully-connected one-layer neural net, with 10,000 trainable network
weights wkj , and 100 trainable bias terms wk0, such that

zk = σ

wk0 +

100∑
j=1

wkjxj


where σ(x) = 1/(1 + e−x) is the logistic nonlinearity. Find the derivatives of the error with
respect to the weights (dE/dwkj) and biases (dE/dwk0). Express your answers in terms of xj ,
zk, and ζk for appropriate values of k and j; the terms wkj and wk0 should not show up
on the right-hand-side of any of your equations.

Solution:

dE

dwk0
=

1

100
(zk − ζk)zk(1− zk)

dE

dwkj
=

1

100
(zk − ζk)zk(1− zk)xj

(b) Suppose we use a CNN (convolutional neural net) with 99 trainable weights w[τ ] and a
single scalar bias term, b, i.e.,

zt = σ

(
b+

49∑
τ=−49

w[τ ]xt−τ

)

where σ(x) = 1/(1 + e−x) is the logistic nonlinearity. Find the derivatives of the error with
respect to the weights (dE/dw[τ ]) and bias (dE/db). Assume that xt = 0 for t ≤ 0 or t ≥ 101.
Express your answers in terms of xj , zk, and ζk for appropriate values of k and j; the terms
w[τ ] and b should not show up on the right-hand-side of any of your equations.

Solution:

dE

db
=

1

100

100∑
t=1

(zt − ζt)zt(1− zt)

dE

dw[τ ]
=

1

100

100∑
t=1

(zt − ζt)zt(1− zt)xt−τ
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27. (10 points) Suppose X = [X1, X2]T is a Gaussian random variable with mean and covariance matrix
given by

µ =

[
3
1

]
, Σ =

[
1 0
0 4

]
Sketch the set of points such that pX(x) = 1

4π e
− 1

2 , where pX(x) is the pdf of X. Clearly label at
least four of the points included in this set.

Solution: The set should be an ellipse, centered at [3, 1]T . The following four points are
included in the set: [

2
1

]
,

[
4
1

]
,

[
3
−1

]
,

[
3
3

]
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28. (10 points) The binary random variable Y has the following prior distribution:

pY (0) = a, pY (1) = 1− a

The random vector X depends on Y , with the conditionally Gaussian pdf pX|Y (x|y) = N (x;µy,Σy),
where the mean vectors and covariance matrices are given by

µ0 =

[
b
c

]
, µ1 =

[
d
e

]
, Σ0 = Σ1 =

[
1 0
0 1

]
Given a sample measurement of X = x, it’s possible to infer the value of Y = ŷ with minimum
probability of error using the following decision rule:

ŷ =

{
1 if wTx + β > 0

0 otherwise

Find w and β in terms of the constants a, b, c, d, e.

Solution:

w =

[
d− b
e− c

]

β = ln(1− a)− ln(a)− 1

2
(d2 + e2) +

1

2
(b2 + c2)
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29. (10 points) An HMM has the parameters Λ = {πi, ai,j , bj(xt) : 1 ≤ i, j ≤ N, 1 ≤ t ≤ T}, with the
standard definitions:

πi = p(q1 = i)

ai,j = p(qt = j|qt−1 = i)

bj(xt) = p(x = xt|qt = j),

where qt is the state index at time t. Suppose you have software available that will compute the
forward, backward, scaled forward, and/or scaled backward algorithm for you, and will therefore
provide you with any or all of the following quantities, for any values of 1 ≤ i, j ≤ N and 1 ≤ t ≤ T :

αt(i) = p(x1, . . . ,xt, qt = i|Λ)

βt(i) = p(xt+1, . . . ,xT |qt = i,Λ)

α̂t(i) = p(qt = i|x1, . . . ,xt,Λ)

gt = p(xt|x1, . . . ,xt−1,Λ)

β̂t(i) = βt(i)/max
j
βt(j)

In terms of πi, aij , bj(xt), αt(i), βt(i), α̂t(i), gt, and/or β̂t(i), find a formula for the following quantity,
assuming that T is much larger than 19:

p(q16 = 4, q17 = 5|x1, . . . ,x18,Λ)

Solution:

p(q16 = 4, q17 = 5|x1, . . . ,x18,Λ) =
p(q16 = 4, q17 = 5,x17,x18|x1, . . . ,x16,Λ)

p(x17,x18|x1, . . . ,x16,Λ)

=

∑N
k=1 α̂16(4)a4,5b5(x17)a5,kbk(x18)∑N

i=1

∑N
j=1

∑N
k=1 α̂16(i)ai,jbj(x17)aj,kbk(x18)

=

∑N
k=1 α̂16(4)a4,5b5(x17)a5,kbk(x18)

g17g18

The last two lines are just three different valid ways to write the denominator. Other valid
solutions include

p(q16 = 4, q17 = 5|x1, . . . ,x18,Λ) =
p(q16 = 4, q17 = 5,x17,x18,x1, . . . ,x16|Λ)

p(x17,x18,x1, . . . ,x16|Λ)

=

∑N
k=1 α16(4)a4,5b5(x17)a5,kbk(x18)∑N

i=1

∑N
j=1

∑N
k=1 α16(i)ai,jbj(x17)aj,kbk(x18)

=

∑N
k=1 α16(4)a4,5b5(x17)a5,kbk(x18)∑N

k=1 α18(k)
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30. (10 points) A second-order HMM is like a standard HMM, except that the state at each time step
depends on the two preceding states. The parameters are Λ = {πi,j , ai,j,k, bk(xt) : 1 ≤ i, j, k ≤
N, 1 ≤ t ≤ T}, with the definitions:

πi,j = p(q1 = i, q2 = j)

ai,j,k = p(qt = k|qt−2 = i, qt−1 − j)
bk(xt) = p(x = xt|qt = k),

where qt is the state index at time t. Suppose you have software available that will compute
the forward and backward algorithms for you, and will therefore provide you with the following
quantities, for any values of 1 ≤ i, j ≤ N and 2 ≤ t ≤ T :

αt(i, j) = p(x1, . . . ,xt, qt−1 = i, qt = j|Λ)

βt(i, j) = p(xt+1, . . . ,xT |qt−1 = i, qt = j,Λ)

In terms of πi,j , ai,j,k, bk(xt), αt(i, j), and/or βt(i, j), find the following expected value:

E [# times, t, for which qt−2 = i, qt−1 = j, qt = k|x1, . . . ,xT ,Λ]

Solution:

E [# times that qt−2 = i, qt−1 = j, qt = k|x1, . . . ,xT ,Λ]

=

T∑
t=3

p (qt−2 = i, qt−1 = j, qt = k|x1, . . . ,xT ,Λ)

=

T∑
t=3

αt−1(i, j)ai,j,kbk(xt)βt(j, k)
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31. (10 points) Suppose you are studying the running behaviors of trained vs. untrained athletes. You
have a sequence of feature vectors xt, where t is time (measured in centiseconds) and xt is a vector
of features computed from a motion sensor being worn at the ankle. You have trained a neural
network to compute bj(xt) = p(xt|qt = j), where qt ∈ {1 = heel strike, 2 = roll, 3 = lift, 4 = swing}
denotes the gait phase. You also know the following probabilities:

ai,j = p(qt = j|qt−1 = i)

αt(i) = p(x1, . . . ,xt, qt = i)

βt(i) = p(xt+1, . . . ,xT |qt = i)

Your goal is to identify all of the instants when the heel first touches the ground, i.e., at each time
step τ (1 ≤ τ ≤ T ), you want to find

PHS(τ) = p(qτ−1 = 4, qτ = 1|x1, . . . ,xT )

Write a formula for PHS(τ) in terms of αt(i), βt(i), ai,j , and bi(xt), for any values of i, j, t that you
find useful.

Solution:

PHS(τ) =
ατ−1(4)a4,1b1(xτ )βτ (1)∑4

i=1

∑4
j=1 ατ−1(i)ai,jbj(xτ )βτ (j)
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32. (10 points) In a neural network with residual connections (ResNet), the kth activation at layer `,

h
(`)
k , is equal to the activation of the same node at the previous layer, plus a computed residual

g(ξ
(`)
k ):

ξ
(`)
k =

N∑
j=1

w
(`)
k,jh

(`−1)
j , 1 ≤ k ≤ N,

h
(`)
k = h

(`−1)
k + g

(
ξ

(`)
k

)
, 1 ≤ k ≤ N,

where g(·) is a scalar nonlinearity, and w
(`)
k,j is a network weight. Suppose that the training loss is

L, and suppose you already know dL
dh

(`)
k

. Find dL
dh

(`−1)
j

in terms of dL
dh

(`)
k

, ġ(ξ) = ∂g

∂ξ
(`)
k

, and w
(`)
k,j .

Solution: The total derivative rule gives us

dL
dh

(`−1)
j

=

N∑
k=1

dL
dh

(`)
k

∂h
(`)
k

∂h
(`)
j

=
dL
dh

(`)
j

+

N∑
k=1

dL
dh

(`)
k

ġ(ξ
(`)
k )w

(`)
k,j
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33. (10 points) An RBF-softmax is similar to a regular softmax nonlinearity, but instead of being a
generalization of the logistic sigmoid, it is a generalization of a nonlinearity called a radial basis
function (RBF), which is a kind of simplified Gaussian. An RBF-softmax has the following form:

ŷk =
wke

−‖x−µk‖2∑N
`=1 w`e

−‖x−µ`‖2
,

where x = [x1, . . . , xD]T is the input vector, ŷk is the kth output, and wk and µk = [µ1,k, . . . , µD,k]T ,
for 1 ≤ k ≤ K, are trainable parameters.

Find dŷk
dwj

for all j ∈ {1, . . . ,K}. Your answer may contain any of the variables used in the problem

statement. Your answer should not include any unresolved derivatives.

Solution:

dŷk
dwj

=
e−‖x−µk‖2∑N

`=1 w`e
−‖x−µ`‖2

1 [k = j]− e−‖x−µk‖2(∑N
`=1 w`e

−‖x−µ`‖2
)2 e

−‖x−µj‖2

=

{
1
wk
ŷk(1− ŷk) k = j

− 1
wk
ŷkŷj otherwise
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34. (10 points) A particular CNN has a grayscale image input, x[n1, n2], and a one-channel output:

ξ[n1, n2] = w[n1, n2] ∗ x[n1, n2],

where ∗ denotes convolution. The output is then max-pooled over the entire image:

ŷ = max
0≤n1<N1

max
0≤n2<N2

ξ[n1, n2]

Suppose the weights and the input image are given by

w[n1, n2] =

{
e−(n2

1+n2
2) −3 ≤ n1 ≤ 3, − 3 ≤ n2 ≤ 3

0 otherwise

x[n1, n2] =

{
e−((n1−15)2+(n2−12)2) 0 ≤ n1 ≤ 63, 0 ≤ n2 ≤ 63

0 otherwise

What is dŷ
dw[2,1]? Your answer should be an explicit function of numerical constants; there should

not be any variables in your answer.

Solution:
dŷ

dw[2, 1]
= e−5
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35. (10 points) Sometimes, it’s not obvious, in advance, what loss function should be used to train a
neural network. For example, suppose that we have a training database containing vector triples of
the form (x,y, z). Suppose we know that the set of vectors, x, can be divided in half through the
origin such that for half of the vectors, y is a linear transformation of x, while for the other half, z
is a linear transformation of x. In other words, for some matrices Uideal and Videal that we don’t
know, and for some vector wideal that we don’t know:

• If wT
idealx ≥ 0 then y = Uidealx.

• If wT
idealx < 0 then z = Videalx.

Devise a differentiable non-negative loss function, L, that will approach zero as the estimated values
of w, U , and V approach their true values. Write your loss as a function of the estimated parameters
w, U , and V , and as a function of the vectors in just one data triple, (x,y, z).

Solution: First, we want differentiable functions of U and V that will be minimized when
y = Ux and z = V x. Most of the functions that do this are norms of the vectors (y−Ux) and
(z− V x), for example, the squared L2 norms, ‖y − Ux‖2 and ‖z− V x‖2, are good choices.

Second, we want to multiply ‖y−Ux‖2 by some modifier that goes to zero when wTx < 0. The
unit step function would do the trick, but it’s not differentiable; we need something that can be
differentiated. The ReLU nonlinearity will do the trick:

L = ReLU(wTx)‖y − Ux‖2 + ReLU(−wTx)‖z− V x‖2

The sigmoid is also a good choice. It doesn’t go to zero immediately when wTx < 0, but it goes
to zero when wTx� 0. Since the problem specification doesn’t actually dictate the norm of w
(it can be any scalar times wideal, and still meet the problem specifications), the sigmoid will
also work here:

L = σ(wTx)‖y − Ux‖2 + σ(−wTx)‖z− V x‖2
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36. (10 points) Suppose y is a scalar continuous piece-wise linear function of the scalar variable x, with

dy

dx
=


0 x < x0

si xi ≤ x < xi+1, 0 ≤ i < N

sN xN ≤ x

This function, y(x), can be exactly represented by a ReLU neural network of the form

y(x) =

N∑
i=0

wiReLU(x+ bi)

Find wi and bi, for all 0 ≤ i ≤ N , in terms of sj and xj , for any 0 ≤ j ≤ N that you find to be
useful.

Solution: We know that

ReLU(x+ bi) =

{
x+ bi x+ bi > 0

0 otherwise

So we can get the breakpoints exactly right by setting

bi = −xi

Setting the slopes equal, we get that

si =

i∑
j=0

wj

which can be inverted to find that

w0 = s0

wi = si − si−1, 1 ≤ i ≤ N
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