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EXAM 2
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• This is a CLOSED BOOK exam.

• You are permitted one sheet of handwritten notes, 8.5x11.

• Calculators and computers are not permitted.

• Don’t simplify explicit numerical expressions.

• If you’re taking the exam online, you will need to have your webcam turned on. Your exam will
appear on Gradescope at exactly 9:30am; you will need to photograph and upload your answers
by exactly 11:00am.

• There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work
accordingly.

• You must SHOW YOUR WORK to get full credit.
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Neural Nets
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Viola-Jones
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Hidden Markov Model
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Gaussians
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1. (20 points) Consider a new type of neural network called a Fourier network, invented for this prob-
lem. Given an input vector x ∈ <nx , a Fourier network computes y ∈ <ny as

y = R cos(Px) + S sin(Qx),

where the functions cos(·) and sin(·) are element-wise scalar cosine and sine, respectively, and where
P ,Q ∈ <nh×nx and R,S ∈ <ny×nh are weight matrices that must be learned from training data.
Suppose the loss is

L =
1

2
‖y − t‖22

for some target vector t. Express either ∂L
∂q`,m

, where q`,m is the (`,m)th element of Q, in terms of

any of the elements of the vectors t,x,y and/or any of the matrices P ,Q,R,S.

Solution:

yi =

nh∑
j=1

si,j sin

(
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k=1

qj,kxk

)
+ other terms

L =
1

2

ny∑
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∂yi
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∂q`,m

=
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(yi − ti)si,` cos(

nx∑
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q`,kxk)xm
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2. (20 points) Consider a 1D convnet with input x[n] and output y[n] related according to

z[k] =

M−1∑
m=0

h[m]x[k −m],

y[n] = max (z[2n], z[2n+ 1]) ,

where h[n] is a set of learned filter weights. Suppose the loss is

L =
1

2

N−1∑
n=0

(y[n]− s[n])2,

where s[n] is a target output. In terms of h[n], s[n], x[n], y[n], z[n], M , N , and/or `, what is ∂L
∂h[`]?

Solution:

∂L
∂h[`]

=

N−1∑
n=0

(y[n]− s[n])x[k∗(n)− `],

where k∗(n) = argmax(z[2n], z[2n+ 1]).
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3. (20 points) A particular Adaboost classifier is being trained using 6 training examples, x1 through
x6. In the first round of training, all 6 have equal weight, so that w1(x1) = . . . = w1(x6) = 1

6 .
The first weak classifier is able to correctly classify tokens x1 through x4, but it incorrectly classifies
tokens x5 and x6, so its weighted error is ε1 = 1

3 . After computing the weights w2(xi) for 1 ≤ i ≤ 6,
a second weak classifier is chosen. The second weak classifier correctly classifies tokens x3 through
x6, but incorrectly classifies x1 and x2. What is ε2?

Solution:
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ε1
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=

1
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ε2 = w2(x1) + w2(x2) =

1

4
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4. (20 points) In a given length-T observation sequence, the sixth observation is missing, because at
the moment x6 should have been recorded, a cyberattack caused the sensor to briefly go offline.
Therefore, you have valid observations of x1, . . . , x5 and of x7, . . . , xT , but the observation x6 is
unknown. The observations are drawn from a discrete finite set xt ∈ {1, . . . ,K}, and are known to
have been generated by an N-state HMM with known model parameters Λ = {πi, ai,j , bj(k)∀1 ≤
i, j ≤ N, 1 ≤ k ≤ K}.
Note that, because of the limited observations, you can only find the forward probabilities αt(i) for
1 ≤ t ≤ 5. Similarly, you can only find the backward probabilities βt(i) for 6 ≤ t ≤ T .

Suppose you want to find the following quantity:

ζ6(`) = Pr{x6 = `|x1, . . . , x5, x7, . . . , xT ,Λ}, 1 ≤ ` ≤ K

Find an expression for ζ6(`) in terms of the model parameters, and in terms of the forward and
backward probabilities at times for which they are known. Make sure that your answer is a function
of no random variable other than `.

Solution:

ζ6(`) =

∑N
j=1

∑N
i=1 Pr{x1, . . . , x5, q5 = i}ai,jbj(`) Pr{x7, . . . , xT |q6 = j}∑K

k=1

∑N
j=1

∑N
i=1 Pr{x1, . . . , x5, q5 = i}ai,jbj(k) Pr{x7, . . . , xT |q6 = j}

=

∑N
i=1

∑N
j=1 α5(i)ai,jbj(`)β6(j)∑K

k=1

∑N
i=1

∑N
j=1 α5(i)ai,jbj(k)β6(j)
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5. (20 points) Consider an N -state Gaussian HMM with D-dimensional observations, x ∈ <D, in
which all states have the same already-known covariance matrix, Σ1 = . . . = ΣN = Σ, but their
mean vectors are distributed as µi = µ0 + δi, where µ0 ∈ <D is a known global mean, and
δi ∈ <D, 1 ≤ i ≤ N , is an unknown state-dependent offset vector. Suppose you are given a training
sequence X = [x1, . . . ,xT ], for which it is known that q1 = q2 = . . . = qT = 5, i.e., all of these
observations were generated by the fifth HMM state. Find the maximum-likelihood estimate of the
parameter vector δ5 in terms of the known parameters µ0 and Σ and the observation vectors x1

through xT .

Solution:

L = −1

2

T∑
t=1

(
(xt − µ0 − δ5)TΣ−1(xt − µ− δ5) + ln |Σ|+ 2πD

)
(1)

∂L
∂δ5

=

T∑
t=1

(xt − µ0 − δ5)TΣ−1 (2)

Since L is quadratic with negative sign, its global maximum is achieved by setting its derivative
equal to zero. Re-arranging terms, we get:

δ5 =
1

T

T∑
t=1

xt − µ0
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