UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing Spring 2023

EXAM 1

Tuesday, September 26, 2023

- This will be a CLOSED BOOK exam.
- You are permitted one sheet of handwritten notes, 8.5x11.
- Calculators and computers are not permitted.
- Don't simplify explicit numerical expressions.
- If you're taking the exam online, you will need to have your webcam turned on. Your exam will appear on Gradescope at exactly 9:30am; you will need to photograph and upload your answers by exactly 11:00am.
- There are a total of 100 points in the exam. Each problem specifies its point total. Plan your work accordingly.
- You must SHOW YOUR WORK to get full credit.

Name:

NetID:

Linear Algebra: If A is tall and thin, with full column rank, then

$$
\mathbf{A}^{\dagger}\mathbf{b} = \mathrm{argmin}_{\mathbf{v}} \|\mathbf{b} - \mathbf{A}\mathbf{v}\|^2 = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}
$$

If A is short and fat, with full row rank, then

$$
\mathbf{A}^{\dagger} = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1}
$$

Orthogonal projection of x onto the columns of A is $x_{\perp} = AA^{\dagger}x$. Orthogonal projection onto the rows of **A** is $x_{\perp} = A^{\dagger}Ax$. Image Interpolation

$$
y[n_1, n_2] = \begin{cases} x\left[\frac{n_1}{U}, \frac{n_2}{U}\right] & \frac{n_1}{U}, \frac{n_2}{U} \text{ both integers} \\ 0 & \text{otherwise} \end{cases}
$$

\n
$$
z[n_1, n_2] = h[n_1, n_2] * y[n_1, n_2]
$$

\n
$$
h_{\text{rect}}[n_1, n_2] = \begin{cases} 1 & 0 \le n_1, n_2 < U \\ 0 & \text{otherwise} \end{cases}
$$

\n
$$
h_{\text{tri}}[n] = \begin{cases} \left(1 - \frac{|n_1|}{U}\right) \left(1 - \frac{|n_2|}{U}\right) & -U \le n_1, n_2 \le U \\ 0 & \text{otherwise} \end{cases}
$$

\n
$$
h_{\text{sinc}}[n_1, n_2] = \frac{\sin(\pi n_1/U)}{\pi n_1/U} \frac{\sin(\pi n_2/U)}{\pi n_2/U}
$$

Barycentric Coordinates

$$
\begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \beta_3 \mathbf{x}_3 = \begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} \\ x_{2,1} & x_{2,2} & x_{2,3} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}
$$

DTFT, DFT, STFT

$$
X(\omega) = \sum_{n} x[n]e^{-j\omega n}
$$

\n
$$
x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega
$$

\n
$$
X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}
$$

\n
$$
x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\frac{2\pi kn}{N}}
$$

\n
$$
X_m(\omega) = \sum_{n} w[n-m]x[n]e^{-j\omega(n-m)}, \quad \omega_k = \frac{2\pi k}{N}
$$

\n
$$
x[n] = \frac{\sum_{m} \frac{1}{N} \sum_{k=0}^{N-1} X_m[k]e^{j\omega_k(n-m)}}{\sum_{m} w[n-m]}
$$

Griffin-Lim

$$
X_t[k] \leftarrow \text{STFT} \{ \text{ISTFT} \{ X_t[k] \} \}
$$

$$
X_t[k] \leftarrow M_t[k]e^{j\angle X_t[k]}
$$

1. (25 points) The extreme learning machine (XLM) is a type of two-layer neural network trained without gradient descent. The first-layer weights are sampled from a unit-normal probability density, and never trained; the second-layer weights are chosen in one step to minimize the mean-squared error with which XLM approximates its training targets. Let \mathbf{x}_i be the ith input vector, let \mathbf{a}_i be the corresponding vector of hidden node activations, and let y_i be the corresponding output target vector. Find the second-layer weight matrix, \mathbf{W}_2 , that minimizes the following mean-squared error term:

$$
\mathcal{L} = \sum_{i=1}^n \|\mathbf{y}_i - \mathbf{W}_2^T \mathbf{a}_i\|_2^2
$$

2. (25 points) You are trying to synthesize a video frame $T(\mathbf{x})$, $\mathbf{x} = [x_1, x_2]^T$ using the method of barycentric coordinates. In this video frame, the corners of one triangle are the points x_1, x_2 , and x_3 given by

$$
\mathbf{x}_1 = \left[\begin{array}{c} 45 \\ 15 \end{array} \right], \quad \mathbf{x}_2 = \left[\begin{array}{c} 30 \\ 41 \end{array} \right], \quad \mathbf{x}_3 = \left[\begin{array}{c} 49 \\ 82 \end{array} \right]
$$

You are trying to find the color of the pixel $\mathbf{x} = [40, 36]^T$.

(a) As a first step, notice that $\mathbf{x} = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \beta_3 \mathbf{x}_3$. Write an equation for β_1 , β_2 , and β_3 in the form of a matrix inverse times a vector. Do not try to evaluate the matrix inverse: just specify the contents of the matrix to be inverted.

(b) Suppose that, using the method in part (a) plus some other steps, you determine that the point $T(\mathbf{x})$ in the target image should have the same color as the point $S(\mathbf{y})$ in a source image $S(\cdot)$, where $y = [13.6, 18.2]^T$. Unfortunately, the source image $S(y)$ is only specified for integer values of y_1 and y_2 . Express $S([13.6, 18.2]^T)$ as a weighted sum of pixels $S(\mathbf{y})$ for which y_1 and y_2 are integers, and specify the values of the weights, using the method of bilinear interpolation. 3. (25 points) Suppose that $x[n] = \cos(\omega_0 n)$. Find its STFT, $X_m[k]$. Your answer should be expressed in terms of ω_0 , m, k, the DFT length N, and the DTFT of the window, $W\left(\frac{2\pi k}{N}\right)$.

4. (25 points) Consider applying the Griffin-Lim algorithm to reconstruct $x[n]$ from $X_{tL/2}[k]$, an STFT that assumes an L-sample Hann window and a hop length of $L/2$ samples. In the first iteration, $x[n]$ is synthesized as

$$
x[n] = \text{ISTFT}\left(X_{tL/2}[k]\right)
$$

Notice that, by this definition, samples $x[L/2]$ through $x[L-1]$ depend on both $X_0[k]$ and $X_{L/2}[k]$. Express $x[n]$, for $\frac{L}{2} \le n \le L - 1$, as a function of $X_0[k]$ and $X_{L/2}[k]$.

THIS PAGE IS SCRATCH PAPER.