
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 417 Multimedia Signal Processing
Spring 2021

PRACTICE EXAM 2

Exam will be Tuesday, November 2, 2021

• This will be a CLOSED BOOK exam.

• You will be permitted one sheet of handwritten notes, 8.5x11.

• Calculators and computers are not permitted.

• If you’re taking the exam online, you will need to have your webcam turned on. Your exam will
appear on Gradescope at exactly 9:30am; you will need to photograph and upload your answers
by exactly 11:00am.

• There will be a total of 100 points in the exam. Each problem specifies its point total. Plan your
work accordingly.

• You must SHOW YOUR WORK to get full credit.



1. (16 points) Suppose you have an M ×D matrix, X = [~x0, . . . , ~xM−1]T , where
∑M−1
m=0 ~xm = ~0. The

eigenvalues of XTX are λ0 through λD−1, its eigenvectors are ~v0 through ~vD−1, and its principal
components are Y = XV .

(a) Write Y TY in terms of the eigenvalues, λ0 through λD−1.

(b) Write
∑M−1
m=0 ‖~xm‖22 in terms of the eigenvalues, λ0 through λD−1.

(c) Write ~vTi X
TX~vj in terms of the eigenvalues, λ0 through λD−1, for 0 ≤ i ≤ j ≤ D − 1.
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2. (16 points) A 2-dimensional Gaussian random vector has mean ~µ and covariance Σ given by

~µ =

[
1
1

]
, Σ =

[ √
2

2

√
2

2√
2

2 −
√

2
2

] [
8 0
0 2

][ √
2

2

√
2

2√
2

2 −
√

2
2

]

Draw a curve of some kind, on a two-dimensional Cartesian plane, showing the set of points{
~x : pX(~x) = 1

8π e
− 1

2

}
.
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3. (16 points) A particular HMM-based speech recognizer only knows two words: word w0, and word
w1. Word w0 has a higher a priori probability: pY (w0) = 0.7, while pY (w1) = 0.3. Each of the
two words is modeled by a four-state Gaussian HMM (N = 4) with three-dimensional observations
(D = 3). All states, in both HMMs, have identity covariance (Σi = I). Both HMMs have exactly
the same transition probabilities and state-dependent means, given by:

Both Words: A =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

 , ~µ1 =

 0
0
0

 , ~µ2 =

 1
1
1

 , ~µ3 =

 1
−1
−1

 , ~µ4 =

 −1
−1
1


But the initial residence probabilities are different:

Word 0: πi =

{
1 i = 1
0 otherwise

Word 1: πi =

{
1 i = 4
0 otherwise

Suppose that you have a two-frame observation, X = [~x1, ~x2], where ~xt = [x1t, x2t, x
T
3t]. The MAP

decision rule, in this case, can be written as a linear classifier,

ŷ =

{
w1 ~wT1 ~x1 + ~wT2 ~x2 + b > 0
w0 otherwise

Find ~w1, ~w2, and b.
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4. (16 points) In terms of αt(i), βt(i), aij , πi and bi(~xt), find

p (q6 = i, q7 = j|~x1, . . . , ~x20)

5. (5 points) Suppose you have a dataset including the vectors

~x =

 1
0
3

 , ~y =

 2
0
3

 , ~z =

 1
1
2


Find a diagonal matrix Σ such that d2

Σ(~x, ~y) > d2
Σ(~x, ~z).
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6. (10 points) Define Φ(z) as follows:

Φ(z) =

∫ z

−∞

1√
2π
e−

1
2u

2

du

Suppose ~X = [X1, X2]T is a Gaussian random vector with mean and covariance given by

~µ =

[
1
0

]
, Σ =

[
9 0
0 4

]
(a) Sketch the set of points such that f ~X(~x) = 1

12π e
− 1

8 , where f ~X(~x) is the pdf of ~X.

(b) In terms of Φ(z), find the probability Pr {−1 < X1 < 1,−1 < X2 < 1}.
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7. (10 points) Suppose that a particular covariance matrix Σ has the following eigenvector matrix, U ,
and eigenvalue matrix, Λ:

U =

√
2

2

[
1 1
1 −1

]
, Λ =

[
4 0
0 1

]
Let ~y(~x) =

[
y1(~x)
y2(~x)

]
= UT~x be the principal components of a vector space ~x.

(a) Plot the set of vectors ~x such that y1(~x) = 3.

(b) Find the squared Mahalanobis distance, d2
Σ(~x, ~µ), between the vectors ~x and ~µ where

~x =

[
5
5

]
, ~µ =

[
1
1

]
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8. (10 points) Suppose that, for a particular classification problem, the correct label of every data
point is as follows:

y∗(~x) =

{
1 ‖~x‖2 < 1.5
0 ‖~x‖2 > 1.5

(1)

Unfortunately, you aren’t allowed to use the correct labeling function. Instead, you have to try to
learn a nearest-neighbor or Bayesian classifier.

(a) Your nearest-neighbor classifier is trained using 25 training samples, taken at integer coordinates
for −2 ≤ x1, x2 ≤ 2. Fortunately, your training data are correctly labeled, using the labeling
function shown in Eq. (1). Thus the complete training dataset is

X =

[
−2 −2 . . . 0 0 0 . . . 2
−2 −1 . . . 0 1 2 . . . 2

]
, Y = [0, 0, . . . , 1, 1, 0, . . . , 0]

Using these 25 training examples, you construct a nearest-neighbor classifier. Draw the decision
boundary of the resulting nearest-neighbor classifier.

(b) Suppose now that f ~X|Y (~x|0) and f ~X|Y (~x|1) are both zero-mean Gaussian pdfs, with the covari-

ance matrices Σ0 and Σ1 respectfully, where

Σ0 =

[
2 0
0 2

]
, Σ1 =

[
1 0
0 1

]
Define η to be the odds ratio, η = pY (0)/pY (1). Find a value of η such that a Bayesian classifier
gives exactly the decision boundary shown in Eq. (1) on the previous page.
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9. (10 points) Suppose that you haveM differentD-dimensional vectorized face images, ~Γm = [γ1m, . . . , γDm]T ,

whose mean is ~Ψ = [ψ1, . . . , ψD]T . Define the data matrix to be A = [~Γ1 − ~Ψ, . . . , ~ΓM − ~Ψ],
and suppose that the eigenvectors and eigenvalues of ATA are given by U = [~u1, . . . , ~uM ] and
Λ = diag(λ1, . . . , λM ).

(a) Find the numerical value of the vector UT~u3.

(b) Your goal is to find a (D ×M) matrix V = [~v1, . . . , ~vM ] so that ~Ωm = V T (~Γm − ~Ψ) is a vector

containing the first M principal components of the image ~Γm. Write an equation showing how
V can be computed from ~Ψ, A, U , and/or Λ.
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10. (10 points) Suppose that you haveM differentD-dimensional vectorized face images, ~Γm = [γ1m, . . . , γDm]T ,

whose mean is ~Ψ = [ψ1, . . . , ψD]T . Define the scatter matrix to be

S =

M∑
m=1

(~Γm − ~Ψ)(~Γm − ~Ψ)T

Suppose that the eigenvectors and eigenvalues of S are V = [~v1, . . . , ~vD] and Λ = diag(λ1, . . . , λD).

You want to find a value of K such that the K-dimensional PCA projection ~Ωm = [~v1, . . . , ~vK ]T (~Γm−
~Ψ) has the following property:

M∑
m=1

∣∣∣~Ωm∣∣∣2 = (0.95)

M∑
m=1

∣∣∣~Γm − ~Ψ∣∣∣2 (2)

Specify an equation that, if satisfied, will guarantee the truth of Eq. 2. Your equation should only
include the scalars M , D, K, and/or the eigenvalues λd (1 ≤ d ≤ D); your equation should not

include ~Γm or ~Ψ.
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11. (20 points) A particular dataset has three data,

~x1 =


0
1
0
−1
0
0

 , ~x2 =


0
0
0
1
0
−1

 , ~x3 =


0
−1
0
0
0
1


Define X = [~x1, ~x2, ~x3] and R = XTX. The matrix R is given by R = V ΛV T where

V =

 −
1√
6

1√
2

2√
6

0

− 1√
6
− 1√

2

 , Λ =

[
3 0
0 3

]

Find a matrix W such that ~yi = WT~xi, ~yi is two-dimensional, and the elements of ~yi are uncorrelated.
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12. (16 points) A particular dataset has the scatter matrix S =
∑n
k=1(~xk − ~m)(~xk − ~m)T , whose first

two eigenvectors are ~v1 and ~v2, characterized by eigenvalues λ1 = 450 and λ2 = 150. Define the
transform ~yk = [~v1, ~v2]T (~xk − ~m). Define the 2× 2 matrix

Q =

[
q11 q12

q21 q22

]
=

n∑
k=1

~yk~y
T
k

Find the numerical values of the elements q11, q12, q21, and q22 of matrix Q.
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13. (16 points) A particular dataset has six data vectors, given by

{~x1, . . . , ~x6} =


 1

0
0

 ,
 −1

0
0

 ,
 0

1
0

 ,
 0
−1
0

 ,
 0

0
1

 ,
 0

0
−1


By calling np.random.randn, you generate a 3× 2 random projection matrix V , given by

V =

 v11 v12

v21 v22

v31 v32


Using this random projection matrix, you compute the transformed feature vectors ~yk = V T~xk. The
total energy of the transformed dataset can be written as

E =
6∑
k=1

~yTk ~yk

Find the value of E in terms of the random projection matrix elements vij .
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14. (16 points) You want to classify zoo animals. Your zoo only has two species: elephants and giraffes.
There are more elephants than giraffes: if Y is the species,

pY (elephant) =
e

e+ 1

pY (giraffe) =
1

e+ 1

where e = 2.718 . . . is the base of the natural logarithm. The height of giraffes is Gaussian, with
mean µG = 5 meters and variance σ2

G = 1. The height of elephants is also Gaussian, with mean
µE = 3 and variance σ2

E = 1. Under these circumstances, the minimum probability of error classifier
is

ŷ(x) =

{
giraffe x > θ
elephant x < θ

Find the value of θ that minimizes the probability of error.
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15. (16 points) Random vector X is distributed as

pX(~x) =

2∑
k=1

ckN (~x|~µ,Σ)

where c1 = c2 = 0.5, and

~µ1 =

[
−2
0

]
, ~µ2 =

[
2
0

]
, Σ1 =

[
4 0
0 1

]
, Σ2 =

[
1 0
0 4

]
Draw a contour plot showing pX(~x) as a function of ~x. Mark the modes of the distribution, and
draw contour lines at levels of e−1/2 and e−2 times the height of the modes.
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16. (16 points) A particular hidden Markov model is parameterized by λ = {πi, aij , bj(~x)} where πi is
uniform (πi = 1

N ). Devise an algorithm to compute p(q1 = k|~x1, . . . , ~xT , λ). Your algorithm should
be similar to the forward algorithm, but with a different initialization.
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17. (16 points) The scaled forward algorithm is provided for you on the formula page at the beginning
of this exam. In terms of the quantities πi, aij , bj(~x), α̂t(j), gt, and/or α̃t(j), find a formula for the
quantity p(qt−1 = i, qt = j, ~xt−1, ~xt|~x1, . . . , ~xt−2, λ).

18. (16 points) The stock market alternates between long bull markets (state 1) and short bear markets
(state 2). This HMM has the following parameters:

~π =

[
1
0

]
, A =

[
0.999 0.001
0.005 0.995

]
, µ1 = 0.1, µ2 = −0.3, σ2

1 = σ2
2 = 1,

where πi = p(q1 = i), aij = p(qt+1 = j|qt = i), and p(xt|qt = j) = N (xt;µj , σ
2
j ).

You observe x2 on day 2.

For what values of x2 does the forward algorithm yield probabilities αt(i) such that α2(2) > α2(1)?

Asking exactly the same question in different words: for what values of x2 would it be rational to
conclude that a bear market has started?
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19. (16 points) Consider two PDFs. Class y = 0 is Gaussian:

p(x|y = 0) = N
(
x;µ0, σ

2
0

)
Class y = 1 is mixture Gaussian, and for some reason, one of its mixture components is the Gaussian
from class 0:

p(x|y = 1) = 0.9p(x|y = 0) + 0.1N
(
x;µ1, σ

2
1

)
where µ0 = 0, µ1 = 3, and σ2

0 = σ2
1 = 1.

For what values of x is
p(x|y = 1)

p(x|y = 0)
> 1?
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20. (16 points) A pelican fishes by sweeping its beak through the water. Each sweep catches many fish.
The total weight of fish caught in a single sweep is an instance of a random variable, X, that is well
described by a Gaussian mixture model:

pX(x) =

2∑
k=1

ckN (x;µk, σ
2
k)

Unfortunately, you don’t know what are the correct values of the parameters ck, µk, and σk.

(a) You have received the following suggestions for the parameters. For each candidate set of
parameters, say whether or not pX(x) would be a valid probability density if computed using
this set of parameters; if not, say why not.

i. Alice suggests c1 = 1, c2 = 1, µ1 = 10, µ2 = 20, σ1 = 10, σ2 = 10. Would pX(x) computed
using this parameter set be a valid probability density? If not, why not?

ii. Barb suggests c1 = 0.1, c2 = 0.9, µ1 = 0, µ2 = 20, σ1 = 10, σ2 = 10. Would pX(x) computed
using this parameter set be a valid probability density? If not, why not?

iii. Carol suggests c1 = 0.5, c2 = 0.5, µ1 = 10, µ2 = 20, σ1 = −10, σ2 = 10. Would pX(x)
computed using this parameter set be a valid probability density? If not, why not?
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(b) You follow a pelican named Pete, and measure the weight of fish he retrieves on four consecutive
dips, resulting in the following training dataset:

{x1, . . . , x4} = {5, 25, 15, 10}

Using the parameter set c1 = 0.5, c2 = 0.5, µ1 = 10, µ2 = 20, σ1 = 10, σ2 = 10, compute
γk(xt) = Pr

{
kth Gaussian|xt

}
for 1 ≤ t ≤ 4, 1 ≤ k ≤ 2. You might find the following table of

Gaussian PDFs to be useful:
x 1√

2π
e−x

2/2

0 0.40
0.5 0.35
1 0.24

1.5 0.13
2 0.05

2.5 0.02
3 0.00

(c) Recall that the training data are

{x1, . . . , x4} = {5, 25, 15, 10}

Suppose that, after a few iterations of EM, you wind up with the following gamma probabilities:

{γ2(x1), γ2(x2), γ2(x3), γ2(x4)} = {0.1, 0.8, 0.6, 0.6}

Find the re-estimated values of c2, µ2, and σ2
2 resulting from this iteration of EM.
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21. (16 points) You’re training an audiovisual bird classifier: based on measurements of the birdsong
frequency (f) and the bird color (c), the bird is classified as a sparrow (s = 1) if and only if

η ln p(c|s = 1) + (1− η) ln p(f |s = 1) > η ln p(c|s = 0) + (1− η) ln p(f |s = 0)

In truth, all sparrows have pitch f < 0.5, and color c < 0.5, while all other birds have pitch f > 0.5
and color c > 0.5. Unfortunately, your training algorithm is broken, so it learned these distributions:

p(f |s = 0) =

{
1 0 ≤ f ≤ 1
0 else

, p(f |s = 1) =

{
1 0 ≤ f ≤ 1
0 else

, p(c|s = 0) =

{
1 0 ≤ c ≤ 1
0 else

In fact, only one of the pdfs was learned to be non-uniform:

p(c|s = 1) =

{
2− 2c 0 ≤ c ≤ 1
0 else

Despite these horrible training results, it is still possible to choose a value of η so that your audiovisual
fusion system has zero error. What value of η gives your classifier zero error?
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22. (16 points) Good days and bad days follow each other with the following probabilities:
qt−1 p(qt = G|qt−1 = ·) p(qt = B|qt−1 = ·)
G 0.7 0.3
B 0.4 0.6

In winter in Champaign, the temperature on a good day is Gassian with mean µG = 50, σG = 20.
The temperature on a bad day is Gaussian with mean µB = 10, σG = 20. A particular sequence of
days has temperatures

{x1 = 10, x2 = 20, x3 = 30}

What is the probability p(X|q1 = B), the probability of seeing this sequence of temperatures given
that the first day was a bad day?
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23. (25 points) Suppose that

aij = p(qt = j|qt−1 = i)

bj(xt) = p(xt|qt = j)

gt = p(xt|x1, . . . , xt−1)

And define the scaled forward algorithm to compute

α̃t(i) = p(qt = i|x1, . . . , xt) =
p(xt, qt = i|x1, . . . , xt−1)

gt
=
p(x1, . . . , xt, qt = i)

g1g2 . . . gt

(a) Devise an algorithm to iteratively compute gt and α̃t(i). Fill in the right-hand side of each
equation, using only the terms ajk, bj(xτ ), gτ , and α̃τ (j) for 1 ≤ j ≤ N , 1 ≤ k ≤ N , 1 ≤ τ ≤ t.

1. INITIALIZE: g1 =

2. INITIALIZE: α̃1(i) =

3. ITERATE: gt =

4. ITERATE: α̃t(i) =

5. TERMINATE: p(X) =

(b) Suppose βt(i) = p(xt+1, . . . , xT |qt = i). Then

α̃t(i)βt(i) = p(f |g)

for some list of variables f , and some other list of variables g. Specify what variables should be
included in each of these two lists.
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24. (20 points) The Maesters of the Citadel need to determine when winter starts. The temperature on
day t is xt. The state of day t is either qt = 0 (Autumn) or qt = 1 (Winter). Nobody really knows
how cold this winter will be or how long it will last, but the Maesters have created an initial model
Λ = {aij , bj(x)} where aij ≡ p(qt = j|qt−1 = i) and bj(x) ≡ p(xt = x|qt = j).

(a) Suppose we have a particular three day sequence of measurements, x1, x2, and x3. Given that
the preceding day was still autumn (q0 = 0), we want to determine the joint probability that
it continued to be autumn for days 1, 2, and 3, and that the three observed temperatures were
measured. In other words, we want an estimate of

G1 = p(q1 = 0, x1, q2 = 0, x2, q3 = 0, x3|q0 = 0,Λ)

Find G1 in terms of aij and bj(xt), for whatever particular values of i, j, and t are most useful
to you.

(b) Suppose it is known that the preceding day was still autumn (q0 = 0). Now, on day 1, the
Maesters have determined that the temperature is x1. Find the conditional probability, given
this measurement, that it is still autumn, i.e., find

G2 = p(q1 = 0|x1, q0 = 0,Λ)

Find G2 in terms of aij and bj(xt), for whatever particular values of i, j, and t are most useful
to you.

(c) The Maesters have collected a long series of measurements, {x1, . . . , xT } for T consecutive days.
From these measurements, the Maesters have applied the forward-backward algorithm in order
to calculate the following two quantities:

αt(i) ≡ p(x1, . . . , xt, qt = i|Λ), βt(i) ≡ p(xt+1, . . . , xT |qt = i,Λ)

Using these quantities, the Maesters wish to calculate the probability that Winter started on a
particular day, t = w. That is, they wish to find

G3 = p(qw−1 = 0, qw = 1|x1, . . . , xT ,Λ)

Find G3 in terms of αt(i), βt(i), aij and bj(xt), for whatever particular values of i, j, and t are
most useful to you.
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25. (20 points) A bimodal HMM uses a common state sequence, Q = [q1, . . . , qT ], to explain two different
observation sequences X = [~x1, . . . , ~xT ] and Y = [~y1, . . . , ~yT ]. The HMM is parameterized by

πi = p(q1 = i)

aij = p(qt = j|qt−1 = i)

bj(~xt) = pX(~xt|qt = j)

cj(~yt) = pY (~yt|qt = j)

Define

αt(i) = p(~x1, ~y1, . . . , ~xt, ~yt, qt = i)

βt(i) = p(~xt+1, ~yt+1, . . . , ~xT , ~yT |qt = i)

(a) Specify initialization formulas for α1(i) and βT (i) in terms of πi, aij , bj(~xt), and cj(~xt).

(b) Specify iteration formulas for αt(i) and βt(i) in terms of πi, aij , bj(~xt), cj(~xt), αt−1(j), and
βt+1(j).
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26. (20 points) You are creating a recommender system that tries to recommend songs that will be
considered to be similar to a given query. Each song is characterized by a two-dimensional vector
~xk = [bk, vk]T where bk is the number of beats per minute, and vk is the fraction of air-time during
which there is a human voice. Your customer considers the following four songs to be similar:

[~x1, ~x2, ~x3, ~x4] =

[
120 140 140 120
0.3 0.3 0.5 0.5

]
You are given two more test data, ~x5 = [b5, v5]T and ~x6 = [b6, v6]T , and you are asked whether or
not ~x5 and ~x6 should be considered similar. Write formulas for the Mahalanobis distance between
~x5 and ~x6 under the following conditions:

(a) Estimate a diagonal data covariance matrix directly from the data, and use it to write the
squared Mahalanobis distance d2

Σ(~x5, ~x6).

(b) Estimate a diagonal data covariance matrix from the data, then regularize it using regularization
parameter λ = 0.01 before using the result to write the squared Mahalanobis distance d2

Σ(~x5, ~x6).
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