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Problem 4.1

Write a phonemic transcription of the sentence “At the still point, there the dance is” (by T.S. Eliot)
using either IPA or ARPABET.

Solution: In ARPABET:

AE T DH AX S T I H L P OI N T DH EH R DH AZ D AE N S I Z

In IPA: æ t D @ s t I l p OI n t D E õ D @ d æ n s I z

Problem 4.2

The softmax computes an estimate of the state posterior pmf, p(q|~x). As discussed in lecture, you can’t
compute exactly the likelihood from the softmax, but you can compute it up to a constant factor G[t]:

bq[t] =
G[t] exp(eq[t])

p(q)
,

where p(q) ∈ [0, 1] is the prior probability of q, eq[t] is the qth node of the neural network’s final-layer
excitation in frame t, and G[t] is a constant, in the sense that it depends on t, but not on q. G[t] is unknown,
but an estimate with nice numerical properties is

G[t] =
1

maxj exp(ej [t])

In HMM training with known segmentation, the parameters of the HMM might be trained using a kind of
maximum-likelihood criterion similar to cross-entropy, specifically, the network parameters are trained to
minimize

L = −
N∑
i=1

∑
t:qt=i

ln bi[t],

where you may assume that qt, the state variable at time t, is known. Find dL
deq [τ ]

, for some particular value

of τ , for all values of q. Be careful:

• Notice that G[τ ] depends on ej [τ ], even for values of j other than qt.

• You may find it useful to consider, separately, the following four cases:
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(a) q = qτ

(b) q = argmaxj ej [τ ]

(c) Both of the above

(d) Neither of the above

Solution:

dL
deq[τ ]

= − 1

bqt [τ ]

(
G[t]

p[q]

d exp(eqτ [τ ])

deq[τ ]
+

exp(eqτ [τ ])

p[q]

dG[τ ]

deq[τ ]

)
where

d exp(eqτ [τ ])

deq[τ ]
=

{
exp(eqτ [τ ]) qτ = q

0 otherwise

and
dG[τ ]

deq[τ ]
=

{
− 1

exp(eq [τ ])
q = argmaxj ej [τ ]

0 otherwise

So we have

dL
deq[τ ]

=


1 q = argmaxj ej [τ ] but q 6= qτ

−1 q 6= argmaxj ej [τ ] but q = qτ

0 otherwise

Problem 4.3

In a Markov model, the state at time t depends only on the state at time t− 1. A semi-Markov model
is a model in which the state at time t depends on a short list of recent states. For example, consider a
model in which qt depends on the most recent two frames. Let’s suppose the model is fully defined by the
following three types of parameters:

• Initial segment probability: πij ≡ p(q1 = i, q2 = j|Λ)

• Transition probability: aijk ≡ p(qt = k|qt−1 = j, qt−2 = i,Λ)

• Observation probability: bk(~x) ≡ p(~xt = ~x|qt = k,Λ)

Design an algorithm similar to the forward algorithm that is able to compute p(X|Λ) with a computational
complexity of at most O

{
TN3

}
. Provide a proof that your algorithm has at most O

{
TN3

}
complexity —

this can be an informal proof in the form of a bullet list, as was provided during lecture 12 for the standard
forward algorithm.

Solution: Define αt(i, j) = p(~x1, . . . , ~xt, qt−1 = i, qt = j|Λ). Compute it as

• Initialize:
α2(i, j) = πijbi(~x1)bj(~x2), 1 ≤ i, j ≤ N

• Iterate:

αt(j, k) =

N∑
i=1

αt−1(i, j)aijkbk(~xt), 1 ≤ t ≤ T, 1 ≤ j, k ≤ N

• Terminate:

p(X|Λ) =

N∑
i=1

N∑
j=1

αT (i, j)
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The highest-complexity part of the algorithm is the iteration step, which requires:

• for each of T different time steps t,

• for each of N different values of j,

• for each of N different values of k,

• we must compute a summation with N terms,

hence it has O
{
TN3

}
complexity.

Problem 4.4

Suppose you have a sequence of T = 100 consecutive observations, X = [x1, . . . , xT ]. Suppose that the
observations are discrete, xt ∈ {1, . . . , 20}. You have it on good information that these data can be modeled
by an HMM with N = 10 states, whose parameters are

• Initial state probability: πi ≡ p(q1 = i|Λ)

• Transition probability: aij ≡ p(qt = j|qt−1 = i,Λ)

• Observation probability: bj(x) ≡ p(xt = x|qt = j,Λ)

In terms of these model parameters, and in terms of the forward probabilities αt(i) and backward probabilities
βt(i) (for any values of i, j, t, x that are useful to you), what is p(q17 = 7, x18 = 3|x1, . . . , x17, x19, . . . , x100,Λ)?

Solution: Conditional probability = joint / marginal. The joint probability is

p(q17 = 7, x1, . . . , x17, x18 = 3, x19, . . . , x100) =

10∑
j=1

α17(7)a7jbj(3)β18(j)

The marginal is

p(x1, . . . , x17, x19, . . . , x100) =

10∑
i=1

10∑
j=1

20∑
k=1

α17(i)aijbj(k)β18(j)

So the conditional is

p(q17 = 7, x18 = 3|x1, . . . , x17, x19, . . . , x100) =

∑10
j=1 α17(7)a7jbj(3)β18(j)∑10

i=1

∑10
j=1

∑20
k=1 α17(i)aijbj(k)β18(j)


