VAE vs. GAN

Probabilities 0000 Nash Equilibrium

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lecture 23: Generative Adversarial Networks Reference: Goodfellow et al. (2014)

Mark Hasegawa-Johnson All content CC-SA 4.0 unless otherwise specified.

University of Illinois

ECE 417: Multimedia Signal Processing, Fall 2020

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary

Probabilistic interpretation of the GAN

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
	0000	00000000	O
Outline			

2 Probabilistic interpretation of the GAN

3 Nash Equilibrium

VAE	VS.	GAN
000	0	

VAE vs. GAN

• A VAE

- scores q(z|x) w.r.t. predefined prior p(z),
- generates latent variables from q(z|x),
- scores data using learned generator p(x|z).

• A GAN

- generates latent variables from predefined prior, p(z),
- generates data using learned generator x = G(z),
- scores data using learned discriminator D(x).

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
o●oo	0000	000000000	0
VAE vs. GAN			

- **Prior:** Same. Both VAE and GAN assume a unit-normal Gaussian or uniform prior for *z*.
- Generator: Similar. GAN generates x from z using x = G(z), therefore x must be continuous. VAE computes p(x|z), so x could be either discrete or continuous.
- Scoring: Very different. VAE trains q(z|x) to minimize D_{KL}(p(z)||q(z|x)). GAN trains D(x) for no purpose other than scoring x.

M/hat is the	discriminator?		
0000			
VAE vs. GAN	Probabilities	Nash Equilibrium	Summary

• The main innovation in GAN is the discriminator, D(x).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- It outputs one number, $D(x) \in (0, 1)$.
- If x is good, D(x)
 ightarrow 1
- If x is bad, $D(x) \rightarrow 0$

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
000●	0000	000000000	O
How can you trai	n the discriminate	or?	

The discriminator is trained by giving it 50% real data, and 50% data generated synthetically by G(x). Its training objective is:

• If x is real data, the discriminator wants to output D(x)
ightarrow 1

• If x is synthetic data generated by G(z), the discriminator wants to output $D(x) \rightarrow 0$

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000		00000000	O
Outline			

2 Probabilistic interpretation of the GAN

3 Nash Equilibrium

Probabilistic i	nterpretation of	the discriminator	
VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	●000	00000000	O

Let's say y = 1 if a token is real data, y = 0 if a token is fake data. The discriminator computes

$$D(x) = \Pr\left\{y = 1 | x\right\}$$

Its goal is to maximize

$$V(D, G) = \mathbb{E}_{x \in \mathsf{data}} \left[\ln \mathsf{Pr} \left\{ y = 1 | x \right\} \right] + \mathbb{E}_{x \in \mathsf{fake}} \left[\ln \mathsf{Pr} \left\{ y = 0 | x \right\} \right]$$
$$= \mathbb{E}_{x \sim p_{data}} \left[\ln D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\ln \left(1 - D(G(z)) \right) \right]$$

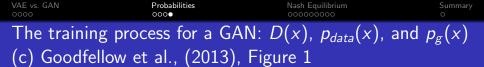
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

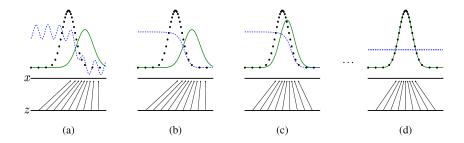
VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0●00	00000000	O
Two-player m	ninimax game		

- The discriminator wants to discriminate real vs. fake data.
- The generator wants to make fake data that is as realistic as possible. So its goal is to generate data, x = G(z), in order to maximize D(G(z)).
- D wants to maximize, and G to minimize,

$$V(D,G) = \mathbb{E}_{x \sim p_{data}} \left[\ln D(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\ln \left(1 - D(G(z)) \right) \right]$$

- The VAE explicitly computes p(x|z).
- The GAN generates z from p(z), then generates x = G(z). The resulting x has some pdf, that you should be able to compute using ECE 313 methods if you wanted to. Let's call this pdf p_g(x).
- The goal of the generator might be phrased as follows: learn G(x) so that $p_g(x)$ matches the true data distribution, $p_{data}(x)$, as well as possible.





・ロト ・聞ト ・ヨト ・ヨト

э

- Blue small dots: D(x)
- Black large dots: $p_{data}(x)$
- Green solid: $p_g(x)$

VAE	GAN

Probabilities

Nash Equilibrium

Outline

Probabilistic interpretation of the GAN

3 Nash Equilibrium

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0000	●00000000	O
Nash Equilibri	ium		

- Suppose two players, D and G, are playing a game.
- Depending on their actions, they receive rewards $V_D(D, G)$ and $V_G(D, G)$, respectively (in our case, $V_G = -V_D$, but that need not be true in general).

• Each of them has perfect knowledge about the other's actions: each knows, in advance, what the other will do.

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0000	○●○○○○○○	O
Nash Equilib	rium		

- Player *D* is called "rational" if, given knowledge of player G's action, their action is $D = \arg \max V_D(D, G)$.
- Player G is called "rational" if, given knowledge of player D's action, their action is $G = \arg \max V_G(D, G)$.
- A Nash equilibrium is a set of actions (*D*, *G*) such that, each player knowing in advance the other player's action, neither player has any rational incentive to change.

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0000	oo●oooooo	O
Nash Equilibrium	for the GAN: Pla	ver D	

First, suppose G is known, therefore $p_G(x)$ is known. Now D wants to maximize:

$$V(D, G) = \mathbb{E}_{x \sim p_{data}} [\ln D(x)] + \mathbb{E}_{x \sim p_g} [\ln (1 - D(x))]$$
$$= \int (p_{data}(x) \ln D(x) + p_g(x) \ln (1 - D(x))) dx$$
$$= \int f(x) dx$$

So for any particular x, the discrimator wants to maximize:

$$f(x) = p_{data}(x) \ln D(x) + p_g(x) \ln (1 - D(x))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0000	ooo●ooooo	O
Nash Equilibrium	for the GAN: Pla	aver D	

$$f(x) = p_{data} \ln D + p_g \ln (1 - D)$$
$$\frac{df}{dD} = \frac{p_{data}}{D} - \frac{p_g}{1 - D}$$
$$\frac{d^2 f}{dD^2} = -\frac{p_{data}}{D^2} - \frac{p_g}{(1 - D)^2}$$

We find the maximizer by setting df/dD = 0, which gives us

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

Furthermore, we see that f(x) is a convex function of D, and therefore $D_G^*(x)$ is the unique global maximizer, because

$$\frac{d^2f}{dD^2} < 0 \quad \forall D \in [0,1], \ p_{data} > 0, \ p_g > 0$$

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0000	00000000	O
Nash Equilibrium	for the GAN: Pla	ver G	

Now, let G try to win. First, let's suppose that D(x) is fixed. In that case, what is the optimum strategy for G?

$$\begin{aligned} G^*_D(z) &= \arg\min \mathbb{E}_{z \sim p(z)} \left[\ln \left(1 - D(G(z)) \right) \right] \\ &= \arg\max D(G(z)) \end{aligned}$$

In other words, G(z) should always output the same x (the one that maximizes D(x)), regardless of what z is! Though that's a good strategy for player G, it's not a very good machine learning result.

Avoiding th	e trivial solution		
0000	0000	00000000	
VAE vs. GAN	Probabilities	Nash Equilibrium	Summary

- How can we avoid the trivial solution, where G(z) always outputs the same x?
- Answer: we have to re-train D(x). If G(z) always outputs the same x, then the probability density goes to infinity $(p_g(x) \rightarrow \infty)$ for that token. If D(x) is allowed to respond rationally, then it will penalize that over-sampled token:

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \rightarrow_{p_g(x) \to \infty} 0$$

 VAE vs. GAN
 Probabilities
 Nash Equilibrium
 Summary

 0000
 0000
 0000
 0

 Nash Equilibrium for the GAN: Player G
 0

In order to get a better machine learning result, let's assume that whatever strategy G uses, D will choose the optimal counter-strategy $D_G^*(x)$. Therefore, G wants to choose p_G in order to minimize

$$V(D_G^*, G) = \mathbb{E}_{x \sim p_{data}} \left[\ln D_G^*(x) \right] + \mathbb{E}_{x \sim p_g} \left[\ln \left(1 - D_G^*(x) \right) \right]$$
$$= \mathbb{E}_{x \sim p_{data}} \left[\ln \frac{p_{data}(x)}{p_{data}(x) + p_g(x)} \right] + \mathbb{E}_{x \sim p_g} \left[\ln \frac{p_g(x)}{p_{data}(x) + p_g(x)} \right]$$
$$= -\ln(4) + D_{KL} \left(p_{data} \| \frac{p_{data} + p_g}{2} \right) + D_{KL} \left(p_g \| \frac{p_{data} + p_g}{2} \right)$$

The KL divergence $D_{KL}(p||q)$ is a concave function of both p and q. Among p and q that are pdfs, it has a unique global minimizer at

$$p_g^*(x) = p_{data}(x)$$

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0000	0000000●0	O
What we've	proved		

• **Proven:** For any generator G, the value function V(D, G) is a convex function of D, with a unique global maximizer

$$D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$$

• **Proven:** If G is updated in a series of gradient steps, and if D has time to converge to D_G^* in between each pair of G-steps, then G will converge to the unique global minimizer of $V(D_G^*, G)$:

$$p_g^*(x) = p_{data}(x)$$

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0000	00000000●	O
Mode collapse			

- Something not true: it is not true that, for a fixed D(x), we can perform multiple gradient steps on G(x). If D(x) can be easily fooled, then G(z) will converge to an incorrect pdf that fools it.
- Mode collapse: Often, if D(x) doesn't know the data well, there's a particular x^* that always fools it. G(z) can "win" by always producing the same output:

$$G(z) \rightarrow x^*$$
 if $D(x^*) = 1$

 Mode collapse can be avoided by training D(x) to convergence between each pair of G-steps, so that misguided G-updates are corrected before they get too bad. If mode collapse happens, though, it may be hard to recover.

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0000	00000000	O
Outline			

2 Probabilistic interpretation of the GAN

3 Nash Equilibrium

VAE vs. GAN	Probabilities	Nash Equilibrium	Summary
0000	0000	00000000	•
Summary			

• A GAN is a pair of networks G(z) and D(x) s.t.

$$\min_{G} \max_{D} \mathbb{E}_{x \sim p_{data}} \left[\ln D(x) \right] + \mathbb{E}_{z \sim p_z} \left[\ln \left(1 - D(G(z)) \right) \right]$$

 If D(x) is trained to convergence between each pair of G-steps, the GAN will reach the global Nash equilibrium

$$D_{G}^{*}(x) = \frac{p_{data}(x)}{p_{data}(x) + p_{g}(x)}$$
$$p_{g}^{*}(x) = p_{data}(x)$$

 If G(z) is allowed to converge while D(x) is incorrect, it will lead to mode collapse. In order to avoid mode collapse, D needs to converge enough, between G-steps, so that it reverses the gradient near the bad mode, pushing G away from x*.