Lecture 20: Rotating, Scaling, Shifting and
Shearing an Image

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

University of lllinois

ECE 417: Multimedia Signal Processing, Fall 2020

I

1867

https://creativecommons.org/licenses/by-sa/4.0/

@ Modifying an Image by Moving Its Points
© Affine Transformations
© mage Interpolation

@ Conclusions

Modifying an Image by Moving Its Points

Outline

@ Modifying an Image by Moving Its Points

Modifying an Image by Moving Its Points
®00

Moving Points Around

se that somebody has given you a bunch of points:

First, let's suppo

ying an Image by Mo

...and let's
suppose you
want to move
them around,
to create new
images. . .

Modifying an Image by Moving Its Points
ooe

Moving One Point

@ Your goal is to synthesize an output image, J[y, x|, where
Jly, x] might be intensity, or RGB vector, or whatever, y is
row number (measured from top to bottom), x is column
number (measured from left to right).

@ What you have available is:

o An input image, /[n, m], sampled at integer values of m and n.
o Knowledge that the input point at /(v, u) has been moved to

the output point at J[y, x|, where x and y are integers, but u
and v might not be integers.

Jly,x] = I(v,u)

Affine Transformations

Outline

© Affine Transformations

Affine Transformations
©0000000

How do we find (u, v)?

Now the question: how do we find (u, v)?
For today, let's assume that this is a piece-wise affine
transformation.

Affine Transformations
0®000000

How do we find (u, v)?

An affine transformation is defined by:

ul| | a b X n c
v | d e y f
A much easier to write this is by using extended-vector notation:

u X

y
1

Il
ca o

b
e
0

= 0

1

It's convenient to define & = [u,v,1]", and X = [x, y,1]", so that
for any X in the output image,

U= AX

Affine Transformations
00®00000

Affine Transforms

Notice that the affine transformation has 6 degrees of freedom:
(a, b, c,d,e,). Therefore, you can accmplish 6 different types of
transformation:

@ Shift the image left<>right (using c)
@ Shift the image up«>down (using f)

@ Scale the image horizontally (using a)
@ Scale the image vertically (using e)

@ Rotate the image (using a, b, d, e)

@ Shear the image horizontally (using b)

Vertical shear (using d) is a combination of horizontal shear +
rotation.

Affine Transformations
000e®0000

Example: Reflection

Identity (Criginal) Reflected Horzontaly

u -1 0
v | = 0 1
1 0 O

Affine Transformations

0000e@000

Example: Scale

Identity (Original) Scaled 2y Horizontaly

SO ON
o = O
= O O

Affine Transformations
0000000

Example: Rotation

rotated by /4

)6 ¢

l[dentity (Criginal)

e

L4 4

u cos@ —sinf O X
v | =1 sinf cosf O y
1 0 0 1 1

Affine Transformations
000000e0

Example: Shear

Identity (Criginal) Sheared Horizontaly

Affine Transformations

0O000000e

Affine Transformations

e T vanstfornmations

¥ Combines Linecar +ransformations,

and Translations

x [a b c x
the ones we looked at, thatwere| d e f Y
tihe you know the ﬁ@ﬁﬁﬂﬂ@n s;@? ing an@ﬂ 0 0 1 w

> P o) 0:26/1:19 @B £ 3] i

https://www.youtube.com/watch?v=il6Z5LCykZk

Image Interpolation

Outline

© Image Interpolation

Image Interpolation
©00000000000000

Integer Output Points

Now let's suppose that you've figured out the coordinate
transform: for any given J[y, x|, you've figured out which pixel
should be used to create it (J[y,x] = I(v, u)).

for x in range(0 M):
for y in range(0,N):
(u,v) = input_pixels_corresponding_to(x,y)
J[y.x] = compute_pixel(l,v,u)

The Problem: Non-Integer Input Points

If [x, y] are integers, then usually, (u, v) are not integers.

Image Interpolation
0O®0000000000000

Image Interpolation

The function compute_pixel performs image interpolation. Given
the pixels of /[n, m] at integer values of m and n, it computes the
pixel at a non-integer position /(v, u) as:

I(v,u) = ZZI[n, m]h(v — n,u — m)

m

Image Interpolation
0O®000000000000

Piece-Wise Constant Interpolation

I(v,u) = ZZ/[n, mlh(v — n,u — m)

For example, suppose

1 0<ux<l, 0<v<«l1l
0 otherwise

h(v, u) = {

Then Eq. (1) is the same as just truncating v and v to the
next-lower integer, and outputting that number:

I(v,u) = Ilv], [u]]

where |u| means “the largest integer smaller than u".

Image Interpolation
000®00000000000

Example: Original Image

For example, let's downsample this image, and then try to recover
it by image interpolation:

Image of a cat with resolution (240, 424, 3)

Image Interpolation
0000®0000000000

Example: Downsampled Image

Here's the downsampled image:

Cat Decimated to 60x106x3

Image Interpolation
00000@000000000

Example: Upsampled Image

Here it is after we upsample it back to the original resolution
(insert 3 zeros between every pair of nonzero columns):

Image Interpolation
000000e00000000

Example: PWC Interpolation

Here is the piece-wise constant interpolated image:

Image Interpolation
0000000®0000000

Bi-Linear Interpolation

u)=>"> I[n,mlh(v = n,u— m)
For example, suppose
h(v, u) = max (0, (1 — |u[)(1 — |v]))

Then Eq. (1) is the same as piece-wise linear interpolation among
the four nearest pixels. This is called bilinear interpolation
because it's linear in two directions.

m=|ul, e=u—m
n=|v|], f=v—-m
I(v,u)=(1—e)(1—Ff)l[n,m]+ (1—e)fl[n,m+1]
+e(l—1F)I[n+1,m+efl[n+1,m+1]

Image Interpolation
00000000®000000

Example: Upsampled Image

Here's the upsampled image again:

Image Interpolation
000000000e00000

Example: Bilinear Interpolation

Here it is after bilinear interpolation:

Image Interpolation
0000000000e0000

PWC and PWL Interpolator Kernels

Bilinear interpolation uses a PWL interpolation kernel, which does
not have the abrupt discontiuity of the PWC interpolator kernel.

PWC Interpolation is like convolving with the PWC interpolator

08

06

04

02

00

-6 -4 2 [2
PWL Interpolation is like convolving with the PWL interpolator

08
06
04

. I [

00

Image Interpolation
00000000000e000

Sinc Interpolation

(v,u) = ZZI[n mlh(v —n,u— m)

For example, suppose
h(v, u) = sinc(mwu)sinc(mv)

Then Eq. (1) is an ideal band-limited sinc interpolation. It
guarantees that the continuous-space image, /(v, u), is exactly a
band-limited D/A reconstruction of the digital image /[n, m].

Image Interpolation

000000000000 e00

Sinc Interpolation

Here is the cat after sinc interpolation:

Cat upsampled using sinc interpolation

Image Interpolation
0000000000000 e0

Original, Upsampled, and Sinc-Interpolated Spectra

Here are the magnitude Fourier transforms of the original,
upsampled, and sinc-interpolated cat.

Spectra of row 160: Original, Aliased in Frequency, Downsampled in Space

Image Interpolation

0000000000000 0e

Original, Upsampled, and Sinc-Interpolated Spectra

Here are the magnitude Fourier transforms of the original,
upsampled, and sinc-interpolated cat.

{1

Spectra of row 160: Original, Aliased in Frequency, D in Space

I

M(M

AM/WNW]{VW vammwwmww

. \\MWMM ”ﬂlﬂlnn\"wwww “q{\PA\'\W‘NTW'}(MWW wm(w 'ﬂl'(
1

R

@ The zeros in the upsampled cat correspond to aliasing in its
spectrum.

@ The ringing in the sinc-interpolated cat corresponds to the
sharp cutoff, at pi/4, of its spectrum.

Conclusions

Outline

@ Conclusions

Conclusions
.

Conclusions

@ You can generate an output image J[y, x| by warping an input
image /(v, u).

e If (v, u) are not integers, you can compute the value of /(v, u)
by interpolating among /[n, m], where [n, m] are integers.

I(v,u) = ZZ/[n, m]h(v — n,u — m)

@ Shift, scale, rotation and shear are affine transformations,

given by
u a b c X
v|=1|d e f y
1 0 01 1

	Modifying an Image by Moving Its Points
	Affine Transformations
	Image Interpolation
	Conclusions

