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Moving Points Around

se that somebody has given you a bunch of points:

First, let's suppo



ying an Image by Mo

...and let's
suppose you
want to move
them around,
to create new
images. . .
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Moving One Point

@ Your goal is to synthesize an output image, J[y, x|, where
Jly, x] might be intensity, or RGB vector, or whatever, y is
row number (measured from top to bottom), x is column
number (measured from left to right).

@ What you have available is:

o An input image, /[n, m], sampled at integer values of m and n.
o Knowledge that the input point at /(v, u) has been moved to

the output point at J[y, x|, where x and y are integers, but u
and v might not be integers.

Jly,x] = I(v,u)
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How do we find (u, v)?

Now the question: how do we find (u, v)?
For today, let's assume that this is a piece-wise affine
transformation.
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How do we find (u, v)?

An affine transformation is defined by:

ul| | a b X n c
v | d e y f
A much easier to write this is by using extended-vector notation:

u X

y
1

Il
ca o

b
e
0

= 0

1

It's convenient to define & = [u,v,1]", and X = [x, y,1]", so that
for any X in the output image,

U= AX
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Affine Transforms

Notice that the affine transformation has 6 degrees of freedom:
(a, b, c,d,e, ). Therefore, you can accmplish 6 different types of
transformation:

@ Shift the image left<>right (using c)
@ Shift the image up«>down (using f)

@ Scale the image horizontally (using a)
@ Scale the image vertically (using e)

@ Rotate the image (using a, b, d, e)

@ Shear the image horizontally (using b)

Vertical shear (using d) is a combination of horizontal shear +
rotation.
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Example: Reflection

Identity (Criginal) Reflected Horzontaly

u -1 0
v | = 0 1
1 0 O
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Example: Scale

Identity (Original) Scaled 2y Horizontaly
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Example: Rotation

rotated by /4

)6 ¢

l[dentity (Criginal)
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u cos@ —sinf O X
v | =1 sinf cosf O y
1 0 0 1 1
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Example: Shear

Identity (Criginal) Sheared Horizontaly
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Affine Transformations
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Integer Output Points

Now let's suppose that you've figured out the coordinate
transform: for any given J[y, x|, you've figured out which pixel
should be used to create it (J[y,x] = I(v, u)).

for x in range(0 M):
for y in range(0,N):
(u,v) = input_pixels_corresponding_to(x,y)
J[y.x] = compute_pixel(l,v,u)

The Problem: Non-Integer Input Points

If [x, y] are integers, then usually, (u, v) are not integers.
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Image Interpolation

The function compute_pixel performs image interpolation. Given
the pixels of /[n, m] at integer values of m and n, it computes the
pixel at a non-integer position /(v, u) as:

I(v,u) = ZZI[n, m]h(v — n,u — m)

m
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Piece-Wise Constant Interpolation

I(v,u) = ZZ/[n, mlh(v — n,u — m)

For example, suppose

1 0<ux<l, 0<v<«l1l
0 otherwise

h(v, u) = {

Then Eq. (1) is the same as just truncating v and v to the
next-lower integer, and outputting that number:

I(v,u) = Ilv], [u]]

where |u| means “the largest integer smaller than u".
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Example: Original Image

For example, let's downsample this image, and then try to recover
it by image interpolation:

Image of a cat with resolution (240, 424, 3)
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Example: Downsampled Image

Here's the downsampled image:

Cat Decimated to 60x106x3
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Example: Upsampled Image

Here it is after we upsample it back to the original resolution
(insert 3 zeros between every pair of nonzero columns):
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Example: PWC Interpolation

Here is the piece-wise constant interpolated image:
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Bi-Linear Interpolation

u)=>"> I[n,mlh(v = n,u— m)
For example, suppose
h(v, u) = max (0, (1 — |u[)(1 — |v]))

Then Eq. (1) is the same as piece-wise linear interpolation among
the four nearest pixels. This is called bilinear interpolation
because it's linear in two directions.

m=|ul, e=u—m
n=|v|], f=v—-m
I(v,u)=(1—e)(1—Ff)l[n,m]+ (1—e)fl[n,m+1]
+e(l—1F)I[n+1,m+efl[n+1,m+1]
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Example: Upsampled Image

Here's the upsampled image again:
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Example: Bilinear Interpolation

Here it is after bilinear interpolation:
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PWC and PWL Interpolator Kernels

Bilinear interpolation uses a PWL interpolation kernel, which does
not have the abrupt discontiuity of the PWC interpolator kernel.

PWC Interpolation is like convolving with the PWC interpolator
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Sinc Interpolation

(v,u) = ZZI[n mlh(v —n,u— m)

For example, suppose
h(v, u) = sinc(mwu)sinc(mv)

Then Eq. (1) is an ideal band-limited sinc interpolation. It
guarantees that the continuous-space image, /(v, u), is exactly a
band-limited D/A reconstruction of the digital image /[n, m].
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Sinc Interpolation

Here is the cat after sinc interpolation:

Cat upsampled using sinc interpolation
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Original, Upsampled, and Sinc-Interpolated Spectra

Here are the magnitude Fourier transforms of the original,
upsampled, and sinc-interpolated cat.

Spectra of row 160: Original, Aliased in Frequency, Downsampled in Space
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Original, Upsampled, and Sinc-Interpolated Spectra

Here are the magnitude Fourier transforms of the original,
upsampled, and sinc-interpolated cat.

{1

Spectra of row 160: Original, Aliased in Frequency, D in Space
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@ The zeros in the upsampled cat correspond to aliasing in its
spectrum.

@ The ringing in the sinc-interpolated cat corresponds to the
sharp cutoff, at pi/4, of its spectrum.
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@ You can generate an output image J[y, x| by warping an input
image /(v, u).

e If (v, u) are not integers, you can compute the value of /(v, u)
by interpolating among /[n, m], where [n, m] are integers.

I(v,u) = ZZ/[n, m]h(v — n,u — m)

@ Shift, scale, rotation and shear are affine transformations,

given by
u a b c X
v|=1|d e f y
1 0 01 1
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