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Moving Points Around

First, let’s suppose that somebody has given you a bunch of points:
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. . . and let’s
suppose you
want to move
them around,
to create new
images. . .
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Moving One Point

Your goal is to synthesize an output image, J[y , x ], where
J[y , x ] might be intensity, or RGB vector, or whatever, y is
row number (measured from top to bottom), x is column
number (measured from left to right).

What you have available is:

An input image, I [n,m], sampled at integer values of m and n.
Knowledge that the input point at I (v , u) has been moved to
the output point at J[y , x ], where x and y are integers, but u
and v might not be integers.

J[y , x ] = I (v , u)
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How do we find (u, v)?

Now the question: how do we find (u, v)?
For today, let’s assume that this is a piece-wise affine
transformation. [

u
v

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]
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How do we find (u, v)?

An affine transformation is defined by:[
u
v

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]
A much easier to write this is by using extended-vector notation: u

v
1

 =

 a b c
d e f
0 0 1

 x
y
1


It’s convenient to define ~u = [u, v , 1]T , and ~x = [x , y , 1]T , so that
for any ~x in the output image,

~u = A~x
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Affine Transforms

Notice that the affine transformation has 6 degrees of freedom:
(a, b, c , d , e, f ). Therefore, you can accmplish 6 different types of
transformation:

Shift the image left↔right (using c)

Shift the image up↔down (using f )

Scale the image horizontally (using a)

Scale the image vertically (using e)

Rotate the image (using a, b, d , e)

Shear the image horizontally (using b)

Vertical shear (using d) is a combination of horizontal shear +
rotation.
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Example: Reflection

 u
v
1

 =

 −1 0 0
0 1 0
0 0 1

 x
y
1
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Example: Scale

 u
v
1

 =

 2 0 0
0 1 0
0 0 1

 x
y
1
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Example: Rotation

 u
v
1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1
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Example: Shear

 u
v
1

 =

 1 0.5 0
0 1 0
0 0 1

 x
y
1
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https://www.youtube.com/watch?v=il6Z5LCykZk
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Integer Output Points

Now let’s suppose that you’ve figured out the coordinate
transform: for any given J[y , x ], you’ve figured out which pixel
should be used to create it (J[y , x ] = I (v , u)).

f o r x i n range ( 0 ,M) :
f o r y i n range ( 0 ,N ) :

( u , v ) = i n p u t p i x e l s c o r r e s p o n d i n g t o ( x , y )
J [ y , x ] = c o m p u t e p i x e l ( I , v , u )

The Problem: Non-Integer Input Points

If [x , y ] are integers, then usually, (u, v) are not integers.
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Image Interpolation

The function compute pixel performs image interpolation. Given
the pixels of I [n,m] at integer values of m and n, it computes the
pixel at a non-integer position I (v , u) as:

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)
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Piece-Wise Constant Interpolation

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m) (1)

For example, suppose

h(v , u) =

{
1 0 ≤ u < 1, 0 ≤ v < 1
0 otherwise

Then Eq. (1) is the same as just truncating u and v to the
next-lower integer, and outputting that number:

I (v , u) = I [bvc, buc]

where buc means “the largest integer smaller than u”.
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Example: Original Image

For example, let’s downsample this image, and then try to recover
it by image interpolation:
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Example: Downsampled Image

Here’s the downsampled image:
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Example: Upsampled Image

Here it is after we upsample it back to the original resolution
(insert 3 zeros between every pair of nonzero columns):
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Example: PWC Interpolation

Here is the piece-wise constant interpolated image:
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Bi-Linear Interpolation

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

For example, suppose

h(v , u) = max (0, (1− |u|)(1− |v |))

Then Eq. (1) is the same as piece-wise linear interpolation among
the four nearest pixels. This is called bilinear interpolation
because it’s linear in two directions.

m = buc, e = u −m

n = bvc, f = v −m

I (v , u) = (1− e)(1− f )I [n,m] + (1− e)fI [n,m + 1]

+ e(1− f )I [n + 1,m] + efI [n + 1,m + 1]
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Example: Upsampled Image

Here’s the upsampled image again:
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Example: Bilinear Interpolation

Here it is after bilinear interpolation:
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PWC and PWL Interpolator Kernels

Bilinear interpolation uses a PWL interpolation kernel, which does
not have the abrupt discontiuity of the PWC interpolator kernel.
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Sinc Interpolation

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

For example, suppose

h(v , u) = sinc(πu)sinc(πv)

Then Eq. (1) is an ideal band-limited sinc interpolation. It
guarantees that the continuous-space image, I (v , u), is exactly a
band-limited D/A reconstruction of the digital image I [n,m].
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Sinc Interpolation

Here is the cat after sinc interpolation:
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Original, Upsampled, and Sinc-Interpolated Spectra

Here are the magnitude Fourier transforms of the original,
upsampled, and sinc-interpolated cat.
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Original, Upsampled, and Sinc-Interpolated Spectra

Here are the magnitude Fourier transforms of the original,
upsampled, and sinc-interpolated cat.

The zeros in the upsampled cat correspond to aliasing in its
spectrum.

The ringing in the sinc-interpolated cat corresponds to the
sharp cutoff, at pi/4, of its spectrum.
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Conclusions

You can generate an output image J[y , x ] by warping an input
image I (v , u).

If (v , u) are not integers, you can compute the value of I (v , u)
by interpolating among I [n,m], where [n,m] are integers.

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

Shift, scale, rotation and shear are affine transformations,
given by  u

v
1

 =

 a b c
d e f
0 0 1

 x
y
1
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