
Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Lecture 20: Rotating, Scaling, Shifting and
Shearing an Image

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

University of Illinois

ECE 417: Multimedia Signal Processing, Fall 2020

https://creativecommons.org/licenses/by-sa/4.0/

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

1 Modifying an Image by Moving Its Points

2 Affine Transformations

3 Image Interpolation

4 Conclusions

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Outline

1 Modifying an Image by Moving Its Points

2 Affine Transformations

3 Image Interpolation

4 Conclusions

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Moving Points Around

First, let’s suppose that somebody has given you a bunch of points:

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

. . . and let’s
suppose you
want to move
them around,
to create new
images. . .

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Moving One Point

Your goal is to synthesize an output image, J[y , x], where
J[y , x] might be intensity, or RGB vector, or whatever, y is
row number (measured from top to bottom), x is column
number (measured from left to right).

What you have available is:

An input image, I [n,m], sampled at integer values of m and n.
Knowledge that the input point at I (v , u) has been moved to
the output point at J[y , x], where x and y are integers, but u
and v might not be integers.

J[y , x] = I (v , u)

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Outline

1 Modifying an Image by Moving Its Points

2 Affine Transformations

3 Image Interpolation

4 Conclusions

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

How do we find (u, v)?

Now the question: how do we find (u, v)?
For today, let’s assume that this is a piece-wise affine
transformation. [

u
v

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

How do we find (u, v)?

An affine transformation is defined by:[
u
v

]
=

[
a b
d e

] [
x
y

]
+

[
c
f

]
A much easier to write this is by using extended-vector notation: u

v
1

 =

 a b c
d e f
0 0 1

 x
y
1


It’s convenient to define ~u = [u, v , 1]T , and ~x = [x , y , 1]T , so that
for any ~x in the output image,

~u = A~x

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Affine Transforms

Notice that the affine transformation has 6 degrees of freedom:
(a, b, c , d , e, f). Therefore, you can accmplish 6 different types of
transformation:

Shift the image left↔right (using c)

Shift the image up↔down (using f)

Scale the image horizontally (using a)

Scale the image vertically (using e)

Rotate the image (using a, b, d , e)

Shear the image horizontally (using b)

Vertical shear (using d) is a combination of horizontal shear +
rotation.

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: Reflection

 u
v
1

 =

 −1 0 0
0 1 0
0 0 1

 x
y
1



Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: Scale

 u
v
1

 =

 2 0 0
0 1 0
0 0 1

 x
y
1



Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: Rotation

 u
v
1

 =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 x
y
1



Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: Shear

 u
v
1

 =

 1 0.5 0
0 1 0
0 0 1

 x
y
1



Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

https://www.youtube.com/watch?v=il6Z5LCykZk

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Outline

1 Modifying an Image by Moving Its Points

2 Affine Transformations

3 Image Interpolation

4 Conclusions

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Integer Output Points

Now let’s suppose that you’ve figured out the coordinate
transform: for any given J[y , x], you’ve figured out which pixel
should be used to create it (J[y , x] = I (v , u)).

f o r x i n range (0 ,M) :
f o r y i n range (0 ,N) :

(u , v) = i n p u t p i x e l s c o r r e s p o n d i n g t o (x , y)
J [y , x] = c o m p u t e p i x e l (I , v , u)

The Problem: Non-Integer Input Points

If [x , y] are integers, then usually, (u, v) are not integers.

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Image Interpolation

The function compute pixel performs image interpolation. Given
the pixels of I [n,m] at integer values of m and n, it computes the
pixel at a non-integer position I (v , u) as:

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Piece-Wise Constant Interpolation

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m) (1)

For example, suppose

h(v , u) =

{
1 0 ≤ u < 1, 0 ≤ v < 1
0 otherwise

Then Eq. (1) is the same as just truncating u and v to the
next-lower integer, and outputting that number:

I (v , u) = I [bvc, buc]

where buc means “the largest integer smaller than u”.

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: Original Image

For example, let’s downsample this image, and then try to recover
it by image interpolation:

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: Downsampled Image

Here’s the downsampled image:

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: Upsampled Image

Here it is after we upsample it back to the original resolution
(insert 3 zeros between every pair of nonzero columns):

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: PWC Interpolation

Here is the piece-wise constant interpolated image:

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Bi-Linear Interpolation

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

For example, suppose

h(v , u) = max (0, (1− |u|)(1− |v |))

Then Eq. (1) is the same as piece-wise linear interpolation among
the four nearest pixels. This is called bilinear interpolation
because it’s linear in two directions.

m = buc, e = u −m

n = bvc, f = v −m

I (v , u) = (1− e)(1− f)I [n,m] + (1− e)fI [n,m + 1]

+ e(1− f)I [n + 1,m] + efI [n + 1,m + 1]

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: Upsampled Image

Here’s the upsampled image again:

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Example: Bilinear Interpolation

Here it is after bilinear interpolation:

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

PWC and PWL Interpolator Kernels

Bilinear interpolation uses a PWL interpolation kernel, which does
not have the abrupt discontiuity of the PWC interpolator kernel.

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Sinc Interpolation

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

For example, suppose

h(v , u) = sinc(πu)sinc(πv)

Then Eq. (1) is an ideal band-limited sinc interpolation. It
guarantees that the continuous-space image, I (v , u), is exactly a
band-limited D/A reconstruction of the digital image I [n,m].

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Sinc Interpolation

Here is the cat after sinc interpolation:

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Original, Upsampled, and Sinc-Interpolated Spectra

Here are the magnitude Fourier transforms of the original,
upsampled, and sinc-interpolated cat.

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Original, Upsampled, and Sinc-Interpolated Spectra

Here are the magnitude Fourier transforms of the original,
upsampled, and sinc-interpolated cat.

The zeros in the upsampled cat correspond to aliasing in its
spectrum.

The ringing in the sinc-interpolated cat corresponds to the
sharp cutoff, at pi/4, of its spectrum.

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Outline

1 Modifying an Image by Moving Its Points

2 Affine Transformations

3 Image Interpolation

4 Conclusions

Modifying an Image by Moving Its Points Affine Transformations Image Interpolation Conclusions

Conclusions

You can generate an output image J[y , x] by warping an input
image I (v , u).

If (v , u) are not integers, you can compute the value of I (v , u)
by interpolating among I [n,m], where [n,m] are integers.

I (v , u) =
∑
m

∑
n

I [n,m]h(v − n, u −m)

Shift, scale, rotation and shear are affine transformations,
given by  u

v
1

 =

 a b c
d e f
0 0 1

 x
y
1



	Modifying an Image by Moving Its Points
	Affine Transformations
	Image Interpolation
	Conclusions

