Long/Short-Term Memory

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

University of lllinois

ECE 417: Multimedia Signal Processing, Fall 2020

I

1867

https://creativecommons.org/licenses/by-sa/4.0/

@ Review: Recurrent Neural Networks
© Vanishing/Exploding Gradient

© Running Example: a Pocket Calculator
@ Regular RNN

© Forget Gate

@ Long Short-Term Memory (LSTM)

e Backprop for an LSTM

© Conclusion

Review

Outline

@ Review: Recurrent Neural Networks

Review
®00

Recurrent Neural Net (RNN) = Nonlinear(lIR)

Fan
. - Ay

e ~, fw

v h

1 - b —l

R

Fa

| ®]

S

Image CC-SA-4.0 by Ixnay,

® ® @

fw tw w
(e - (e - (e

lu tu tu

|/-- \ "".“h\ll | - 1

Kea | I'x_x‘_.f' xu_},

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg

Review
oeo

Back-Propagation and Causal Graphs

g _
dX o —0 dh,‘ aX

For each h;, we find the total derivative of y w.r.t. h;, multiplied
by the partial derivative of h; w.r.t. x.

Review
ooe

Back-Propagation Through Time

Back-propagation through time computes the error gradient at
each time step based on the error gradients at future time steps. If
the forward-prop equation is

M-1

ylnl = g(eln]), eln] = x[n] + Y w[m]y[n — m],
m=1

then the BPTT equation is

M-1
o1 = 4o = aiﬁ] 3 dlo-+ mu{mlg(eln)

Weight update, for an RNN, multiplies the back-prop times the
forward-prop.

] = 229l

Vanishing Gradient

Outline

@ Vanishing/Exploding Gradient

Vanishing Gradient
[Jelele)

Vanishing /Exploding Gradient

@ The “vanishing gradient” problem refers to the tendency of

dyd[gf;]m] to disappear, exponentially, when m is large.

@ The “exploding gradient” problem refers to the tendency of
ldyd[gf;]m] to explode toward infinity, exponentially, when m is
arge.

o If the largest feedback coefficient is |w[m]| > 1, then you get
exploding gradient. If [w[m]| < 1, you get vanishing gradient.

Vanishing Gradient
0®00

Example: A Memorizer Network

Suppose that we have a very simple RNN:
yln] = wx[n] + ug[n — 1]

Suppose that x[n] is only nonzero at time 0:

X0 n=20
X["]:{o n#0

Suppose that, instead of measuring x[0] directly, we are only
allowed to measure the output of the RNN m time-steps later. Our
goal is to learn w and u so that §[m] remembers xp, thus:

1

E=-
2

(P[m] - x0)°

Vanishing Gradient
coeo

Example: A Memorizer Network

Now, how do we perform gradient update of the weights? If

y[n] = wx[n] + uy[n — 1]

% N Z (d;fn]) agx]

"§:<d[1) 0= (g7

But the error is defined as

then

E= 2 (lm] - %)’

SO
dE _ dE _ , dE _
dylo] dyll] 4[]

u™ (9[m] - x0)

Vanishing Gradient
ocooe

Example: Vanishing Gradient

So we find out that the gradient, w.r.t. the

coefficient w, is either exponentially small, | {24 AEIMBLEN;

or exponentially large, depending on
b —
whether |u] <1 or |u| > 1: N g
—en-25%) —
dE \
> m o6 b\
— = X0 m| — Xo)u \
= =% (9lml %) TN
In other words, if our application requires AN
the neural net to wait m time steps before , | b e B
generating its output, then the gradient is
Image CC-SA-4.0, PeterQ, Wikipedia

exponentially smaller, and therefore
training the neural net is exponentially
harder.

Example

Outline

© Running Example: a Pocket Calculator

Example
®00

Notation

Today's lecture will try to use notation similar to the Wikipedia
page for LSTM.

e x[t] = input at time t

@ y[t] = target/desired output

@ c[t] = excitation at time t OR LSTM cell
h[t] = activation at time t OR LSTM output
u = feedback coefficient

w = feedforward coefficient
b = bias

Example
ceo

Running Example: a Pocket Calculator

The rest of this lecture will refer to a toy application called
“pocket calculator.”

Pocket Calculator

@ When x[t] > 0, add it to the current tally:
c[t] = c[t — 1] + x[t].
e When x[t] =0,
@ Print out the current tally, h[t] = c[t — 1], and then
@ Reset the tally to zero, c[t] = 0.

o’

Example Signals

Input: x[t] =1,2,1,0,1,1,1,0
Target Output: y[t] =0,0,0,4,0,0,0,3

A\

Example
ocoe

Beclan Callaulenas Pocket Calculator

@ When x[t] > 0, add it to Summation RNN: Sample Input (£
the current tally: :
s IO A 2%
e When x[t] = 0, . [H [[[TTT[
@ Print out the current 30 —urnmation RNN: Corresponding Target Output A4
tally, h[t] = c[t — 1], " {
and then ° N
© Reset the tally to zero, .
c[t] = 0. L

Outline

@ Regular RNN

RNN
®0000000

One-Node One-Tap Linear RNN

Suppose that we have a very simple RNN:

Excitation: c[t] = x[t] + uh[t — 1]
Activation: h[t] = o, (c[t])

where oj() is some feedback nonlinearity. In this simple example,
let’s just use op(c[t]) = c[t], i.e., no nonlinearity.

GOAL: Find u so that h[t] ~ y[t]. In order to make the problem
easier, we will only score an “error” when y[t] # O:

E=> Y (hld—ylt)’

t:y[t]>0

RNN
0®000000

RNN with v =1
RNN: v =17

ObViOUSIy, |f we want to jUSt add Input, Target, and Output of an RNN with w=1
numbers, we should just set u = 1.

Then she RN i compueng. |~ |1 111 [1]
Excitation: c[t] = x[t] + h[t — 1] w0
Activation: h[t] = op (c[t]) ’ ‘

That works until the first

sero-valued input. But then itjuse | %] HHHH

keeps on adding. S

RNN
00®00000

RNN: v = 0.57 RNN with v =0.5

Can we get decent results using
U= 05? . Input, Target, and Output of an RNN with w=0.5
@ Advantage: by the time we g2 [H H H [[{
reach x[t] = 0, the sum has . [H [LU [| [TTTI
kind of leaked away from us »
(c[t] = 0), so a hard-reset is g { N
not necessary. oL s
@ Disadvantage: by the time we .
reach x[] = 0, the sum has | ¢ m I H H IA {
kind of leaked away from us o H [H . TZD h”ﬂ {
(h[t] = 0).

RNN
000®0000

Gradient Descent

c[t] = x[t] + uh[t — 1]
h{t] = on (c[t])

Let's try initializing u = 0.5, and then performing gradient descent
to improve it. Gradient descent has five steps:

© Forward Propagation: c[t] = x[t] + uh[t — 1], h[t] = c[t].
@ Synchronous Backprop: ¢[t] = 0E/Oc][t].

© Back-Prop Through Time: §[t] = dE/dc|t].

Q Weight Gradient: dE/du =), 0[t]h[t — 1]

© Gradient Descent: u < u — ndE/du

RNN
00008000

Gradient Descent

Excitation: c[t] = x[t] + uh[t — 1]
Activation: h[t] = o (c[t])

Error: E = % Z (h[t] — y[t])®

t:y[t]>0

So the back-prop stages are:

OE hlt] — y[t t] >0
Synchronous Backprop: €[t] = ac[t] - { (() =t ﬂh]erwise
dE

BPTT: §[t] =]~ = €[t] + ud[t + 1]

t]
Weight Gradient: —— =) " 6[t]h[t — 1]
t

RNN
Backprop Stages, u = 0.5
Error £[t], Defined to be nonzero only when y[t] >0
o
Backprop Stages
0]

E[t] — { éh[t] - y[t]) .y[t] >0 ' " Backprop Gradient 6[t] = dE/dc[t] |

hit] - ylt]

£[t]

otherwise = - °| ""qll D I
o[t] = €[t] + wé[t + 1] ;

dE o
du:zt:ci[t]h[tl] o1 Y M1 T

|
o
S

oltihlt—1]

|
W~
o
)

0 5 10 15 20 25 30
dEjdw =3 6ltlhlt—1]=-66324

RNN
00000080

Vanishing Gradient and Exploding Gradient

e Notice that, with |u| < 1, J[t] tends to vanish exponentially
fast as we go backward in time. This is called the vanishing
gradient problem. It is a big problem for RNNs with long
time-dependency, and for deep neural nets with many layers.

o If we set |u| > 1, we get an even worse problem, sometimes
called the exploding gradient problem.

RNN, v =1.7 RNN, v =1.7

c[t] = x[t] + uh[t — 1] 0[t] = €[t] + uo[t + 1]

Input, Target, and Output of an RNN with w=1.7 1e7 Error £[t], Defined to be nonzero only when y[t] >0
4 s
=
=) { o2
22 =)
X kS
[H [[[T ! T[s
0 “o
. lel4 Backprop Gradient 6[t]= dE/dc[t]
_ 15
20 2 10
g &
10 Los T
&
o 00 1KY
1e7 lel4
3 6
=2 E a
£ [=
1 =2
5
o snt? TI o
0 5 10 15 20 25 30 0 5 10 15 20 25 30

dE/dw =3 6[t]hlt - 11=1.7578e+16

Forget Gate

Outline

© Forget Gate

Forget Gate
©000000000

Hochreiter and Schmidhuber’'s Solution: The Forget Gate

Instead of multiplying by the same weight, u, at each time step,
Hochreiter and Schmidhuber proposed: let's make the feedback
coefficient a function of the input!

Excitation: c[t] = x[t] + f[t]h[t — 1]
Activation: h[t] = op (c[t])
Forget Gate: f[t] = o4 (wex[t] + urh[t — 1] + by)

Where o4() and og() might be different nonlinearities. In
particular, it's OK for () to be linear (o4(c) = ¢), but og()
should be clipped so that 0 < f[t] <1, in order to avoid gradient
explosion.

Forget Gate
0®00000000

The Forget-Gate Nonlinearity

The forget gate is
flt] = og (wex[t] + urh[t — 1] + by)

where o,4() is some nonlinearity such that 0 < o,() < 1. Two such
nonlinearities are worth knowing about.

Forget Gate
00®0000000

Forget-Gate Nonlinearity #1: CRelLU

The first useful nonlinearity is the CReLU (clipped rectified linear
unit), defined as

og(wex + urh 4+ be) = min (1, max (0, wex + urh + by))

@ The CRelLU is particularly useful for knowledge-based
design. That's because 0(1) =1 and ¢(0) =0, so it is
relatively easy to design the weights wy, ur, and br to get the
results you want.

@ The CReLU is not very useful, though, if you want to choose
your weights using gradient descent. What usually happens
is that wy grows larger and larger for the first 2-3 epochs of
training, and then suddenly wr is so large that
d(wex + urh + be) = 0 for all training tokens. At that point,
the gradient is dE /dw = 0, so further gradient-descent
training is useless.

Forget Gate
000®000000

Forget-Gate Nonlinearity #1: Logistic Sigmoid

The second useful nonlinearity is the logistic sigmoid, defined as:

1

og(wex + urh+ br) = - e (wix+urh+br)

@ The logistic sigmoid is particularly useful for gradient
descent. That's because its gradient is defined for all values
of wr. In fact, it has a really simple form, that can be written
in terms of the output: ¢ = o(1 — o).

@ The logistic sigmoid is not as useful for knowledge-based
design. That's because 0 < 0 < 1: as x - —o0, o(x) — 0,
but it never quite reaches it. Likewise as x — oo, o(x) — 1,
but it never quite reaches it.

Forget Gate
0000®00000

Pocket Calculator
e When x[t] > 0,
accumulate the input, and
print out nothing.
@ When x[t] = 0, print out
the accumulator, then

Summation RNN: Sample Input x[t]

I TAHRAE

Summation RNN: Corresponding Target Output y{t]

o = N w &
—oe

reset. oy
... but the “print out nothing”]
part is not scored, only the]
accumulation. Furthermore, ols

nonzero input is always
x[t] > 1.

Forget Gate
00000e0000

£ = % Zt:y[t]>0 (h[t] - y[t])2 =0

POCket Ca |Cu |ator Input, Target, & Output: RNN w/ Forget Gate f=CReLU(1-x[t])
4

G) “ il TN el

calculator as

e When x[t] > 1,
accumulate the input. =10

o
e

o When X[t] — 01 print OUt o Here is an h[t] with zero e‘rroratthénmesy[‘t]>0
the accumulator, then

Al ,THHH ;nmm

0 5 10 15

25 30

Forget Gate
000000e000

Forget-Gate Implementation of the Pocket Calculator

It seems like we can approximate the pocket calculator as:
e When x[t] > 1, accumulate the input: c[t] = x[t] + h[t — 1].

e When x[t] = 0, print out the accumulator, then reset:
c[t] = x[t].

So it seems that we just want the forget gate set to

1 x[t]>1
f[t]_{ 0 x[t]=0

This can be accomplished as

f[t] = CReLU (x[t]) = max (0, min (1, x[t]))

Forward Prop

Input, Target, & Output: RNN w/ Forget Gate f=CReLU(1-x[t])
Forget Gate Implementation of _4
o B
clt] = x[t] + F[t]h[t — 1] o” N [
h(t] = c[t]

F[t] = CReLU (x[t])

ITTHUH LTTIUSH ;””lm :

Forget Gate
0000000080

(BackProp |

Error £[t], Defined to be nonzero only when y[t] >0

Forget Gate Implementation of T -0 l
the Pocket Calculator L 20

" Backprop Gradient 6[t] = dE/dc[t] |

= X + AR -1 | e e
h(t] = c[t] g e
f[t] = CReLU (x[t]) o J,ll sll“ EITITING

oltIplt—1]
L
o
8
3

0 5 10 15 20 25 30
dE/dw = F5[t]hlt— 1] =-19630

Forget Gate
000000000e

What Went Wrong?

@ The forget gate correctly turned itself on (remember the past)
when x[t] > 0, and turned itself off (forget the past) when
x[t] = 0.

@ Unfortunately, we don’t want to forget the past when
x[t] = 0. We want to forget the past on the next time step
after x[t] = 0.

e Coincidentally, we also don't want any output when x[t] > 0.

The error criterion doesn't score those samples, but maybe it
should.

LSTM
Outline

@ Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

The LSTM solves those problems by defining two types of memory,
and three types of gates. The two types of memory are

@ The “cell,” c[t], corresponds to the excitation in an RNN.

@ The “output” or “prediction,” h[t], corresponds to the
activation in an RNN.

The three gates are:
© The cell remembers the past only when the forget gate is on,
flt] =1.
@ The cell accepts input only when the input gate is on, i[t] = 1.
© The cell is output only when the output gate is on, o[t] = 1.

Long Short-Term Memory (LSTM)

The three gates are:

© The cell remembers the past only when the forget gate is on,
flt] =1.
@ The cell accepts input only when the input gate is on, i[t] = 1.

c[t] = f[t]c[t — 1] + i[t]on (wex[t] + uch[t — 1] + be)
© The cell is output only when the output gate is on, o[t] = 1.

h(t] = o[t]c[t]

Characterizing Human Memory

INPUT GATE PERCEPTION
OUTPUT GATE ACTION

Pr {remember} = p et/ T 4 (1 — pry)e t/ Tsmm

When Should You Remember?

c[t] = f[t]c[t — 1] + i[t]on (wex[t] + uch[t — 1] + bc)
h(t] = o[t]c|t]

© The forget gate is a function of current input and past output,
flt] = og (wex[t] + urh[t — 1] + by)

@ The input gate is a function of current input and past output,
I[t] =o0g (W,'X[t] + U,‘h[t —].] + b,‘)

© The output gate is a function of current input and past
output, o[t] = o5 (Wox[t] + uoh[t — 1] + by)

i[t] = input gate = og(w;x[t] + ujh[t — 1] + b;)

o[t] = output gate = oz (wox[t] + uoh[t — 1] + bo)

f[t] = forget gate = og(wex[t] + urh[t — 1] + br)

c[t] = memory cell = f[t]c[t — 1] + i[t]on (wex[t] + uch[t — 1] + be)
h[t] = output = o[t|c[t]

LSTM
Forward Prop

Input x[t] of the LSTM

[l LA el

Target Output yft] of the LSTM

Example: Pocket Calculator

i[t] = CReLU(1)
o[t] = CReLU(1 — x[t])

° ~
—e

f[t] _ CReLU(l _ h[t _ 1]) zE Cell c[t] of the LSTM, flt]=CReLU(1-h[t-1]), i[t]=CReLU(1)
et = tte—etontd | il]
h(t] = o[t]c[t] o e sy

Backprop

Outline

@ Backprop for an LSTM

Backprop
©000000000

Backprop for a normal RNN

In a normal RNN, each epoch of gradient descent has five steps:

2]

Forward-prop: find the node excitation and activation,
moving forward through time.

Synchronous backprop: find the partial derivative of error
w.r.t. node excitation at each time, assuming all other time
steps are constant.

Back-prop through time: find the total derivative of error
w.r.t. node excitation at each time.

Weight gradient: find the total derivative of error w.r.t.
each weight and each bias.

Gradient descent: adjust each weight and bias in the
direction of the negative gradient

Backprop
0®00000000

Backprop for an LSTM

An LSTM differs from a normal RNN in that, instead of just one
memory unit at each time step, we now have two memory units
and three gates. Each of them depends on the previous time-step.
Since there are so many variables, let's stop back-propagating to
excitations. Instead, we'll just back-prop to compute the derivative
of the error w.r.t. each of the variables:

dE dE dE dE dE

op[t] = dTm’ dc[t] = dc—[t], dit] = diTt]’ 0o[t] = dTm’ dft] = df—[t]

The partial derivatives are easy, though. Error can't depend
directly on any of the internal variables; it can only depend
directly on the output, h[t]:

OE

Eh[t] = 8T[t]

Backprop
0O®0000000

Backprop for an LSTM

In an LSTM, we'll implement each epoch of gradient descent with
five steps:
© Forward-prop: find all five of the variables at each time step,
moving forward through time.
@ Synchronous backprop: find the partial derivative of error
w.r.t. h[t].
© Back-prop through time: find the total derivative of error
w.r.t. each of the five variables at each time, starting with
h[t].
@ Weight gradient: find the total derivative of error w.r.t.
each weight and each bias.
© Gradient descent: adjust each weight and bias in the
direction of the negative gradient

Backprop
0008000000

Synchronous Back-Prop: the Output

Suppose the error term is
1 &)
E=7 > (hlt -yt
t=—00

Then the first step, in back-propagation, is to calculate the partial
derivative w.r.t. the prediction term h[t]:

enlt] = g7 = Hlel =1t

Backprop
0000®00000

Synchronous Back-Prop: the other variables

Remember that the error is defined only in terms of the output,

h[t]. So, actually, partial derivatives with respect to the other
variables are all zero!

0E
“ltl = 5

oE
€o[t] Bold]
6f[t] 8f[t]

OE
ec(t] =

Backprop
0000080000

Back-Prop Through Time

Back-prop through time is really tricky in an LSTM, because four
of the five variables depend on the previous time step, either on
h[t — 1] or on c[t — 1]:

i[t] = og(wix[t] + uih[t — 1] + b;)

o[t] = og(Wox[t] + uoh[t — 1] + b,)

f(t] = og(wex[t] + urh[t — 1] + br)

c[t] = fltlc[t — 1] + i[t]on (wex[t] + uch[t — 1] + b¢)
h[t] = o[t]c[t]

Backprop
000000®000

Back-Prop Through Time

Taking the partial derivative of each variable at time t w.r.t. the
variables at time t — 1, we get

8/1?1{[?1] = dg(WiX[t] + ujh[t — 1] + b;)u;
do[t]
oht —1]
(%a[f[—ﬂl] = 0g(wex[t] + urh[t — 1] + br)ur
8;?:[_1“]1] = i[t]én (wex[t] + uch[t — 1] + be) uc
oclt]

oclt — 1]

= 0g(Wox[t] + uoh[t — 1] + bo)uo

= f[t]

Backprop
0000000800

Back-Prop Through Time

Using the standard rule for partial and total derivatives, we get a
really complicated rule for h[t]:

dE OE dE 0i[t + 1] dE Oo[t+ 1]
dh[] ~ o[" dift+1] oA | do[t+1] oh[q
dE Of[t+1] dE Ocft+1]

df{t +1] Oh[t] dc[t+ 1] Ohlt]

The rule for c[t] is a bit simpler, because OE /Jc[t] = 0, so we
don’t need to include it:

dE dE Oh[t] dE Oc[t + 1]

dc[t] dh[t] Oc[t] = dc[t +1] Oc]t]

Backprop
0000000080

Back-Prop Through Time

If we define d4[t] = dE/dh[t], and so on, then we have

5;,[1'] = 6;,[1.'] + (5,’[1‘ + 1](5'g(W,'X[t + 1] + U,‘h[l’] + b,-)u,-
+ do[t + 1]og(wox[t + 1] + uoh[t] + bo)uo
+ O¢[t + 1)og(wex[t + 1] + urh[t] + br)ur
+ [t + 1]0c[t + 1]oh (wex[t + 1] + uch[t] + be) uc

The rule for c[t] is a bit simpler:

Oc[t] = dn[t]o[t] + dc[t + 1]F[t + 1]

Backprop
000000000e

Back-Prop Through Time

BPTT for the gates is easy, because nothing at time t + 1 depends
directly on o[t], i[t], or f[t]. The only dependence is indirect, by
way of h[t] and c[t]:
dE dE Oh[t]
do[t] = = = Op[t]c[t
o[t = Gore] = anej dofyy ~ Orltleld
51 = 9E_ dE Ocli]
di[t] dc[t] Oi[t]
dE dE Oclt]

ot = Gt = depgorpg ettt — U

= dc[tlon (wex[t] + uch[t — 1] + bc)

Conclusion

Outline

© Conclusion

Conclusion
°

@ RNNs suffer from either exponentially decreasing memory (if
|w| < 1) or exponentially increasing memory (if |w| > 1).
This is one version of a more general problem sometimes
called the gradient vanishing problem.

@ The forget gate solves that problem by making the feedback
coefficient a function of the input.

@ LSTM defines two types of memory
(cell=excitation="“long-term memory,” and
output=activation= "“short-term memory”), and three types of
gates (input, output, forget).

@ Each epoch of LSTM training has the same steps as in a
regular RNN:

@ Forward propagation: find h[t].

@ Synchronous backprop: find the time-synchronous partial
derivatives €[t].

© BPTT: find the total derivatives 0[t].

© Weight gradients

@ Gradient descent

	Review: Recurrent Neural Networks
	Vanishing/Exploding Gradient
	Running Example: a Pocket Calculator
	Regular RNN
	Forget Gate
	Long Short-Term Memory (LSTM)
	Backprop for an LSTM
	Conclusion

