
Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Lecture 17: Practical WFSTs

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 417: Multimedia Signal Processing, Fall 2020

https://creativecommons.org/licenses/by-sa/4.0/

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

1 Review: WFSA

2 Common FSTs in Automatic Speech Recognition

3 Training a Grammar: Laplace Smoothing

4 Composition

5 Topological Sorting

6 Best Path

7 Re-Estimating WFST Transition Weights

8 Summary

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Outline

1 Review: WFSA

2 Common FSTs in Automatic Speech Recognition

3 Training a Grammar: Laplace Smoothing

4 Composition

5 Topological Sorting

6 Best Path

7 Re-Estimating WFST Transition Weights

8 Summary

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Weighted Finite State Acceptors

0

1

2

3 4 5

6

The/0.3

A/0.2

A/0.3
This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4

An FSA specifies a set of strings. A string is in the set if it
corresponds to a valid path from start to end, and not
otherwise.

A WFSA also specifies a probability mass function over the
set.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Semirings

A semiring is a set of numbers, over which it’s possible to define a
operators ⊗ and ⊕, and identity elements 1̄ and 0̄.

The Probability Semiring is the set of non-negative real
numbers R+, with ⊗ = ·, ⊕ = +, 1̄ = 1, and 0̄ = 0.

The Log Semiring is the extended reals R ∪ {∞}, with
⊗ = +, ⊕ = − logsumexp(−,−), 1̄ = 0, and 0̄ =∞.

The Tropical Semiring is just the log semiring, but with
⊕ = min. In other words, instead of adding the probabilities
of two paths, we choose the best path:

a⊕ b = min(a, b)

Mohri et al. (2001) formalize it like this: a semiring is
K =

{
K,⊕,⊗, 0̄, 1̄

}
where K is a set of numbers.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Algorithm for a WFSA

Input string, S = [s1, . . . , sK]. For example, the string “A dog
is very very hungry” has K = 5 words.
Transitions, t, each have predecessor state p[t] ∈ Q, next
state n[t] ∈ Q, weight w [t] ∈ R and label `[t] ∈ Σ.

Initialize with path cost either 1̄ or 0̄:

δ0(i) =

{
1̄ i = initial state

0̄ otherwise

Iterate by choosing best incoming transition:

δk(j) = best
t:n[t]=j ,`[t]=sk

δk−1(p[t])⊗ w [t]

ψk(j) = argbest
t:n[t]=j ,`[t]=sk

δk−1(p[t])⊗ w [t]

Backtrace by reading best transition from the backpointer:

t∗k = ψ(q∗k+1), q∗k = p[t∗k]

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Determinization

A WFSA is said to be deterministic if, for any given (predecessor
state p[e], label `[e]), there is at most one such edge. For
example, this WFSA is not deterministic.

0

1

2

3 4 5

6

The/0.3

A/0.2

A/0.3
This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Weighted Finite State Transducers

0

1

2

3 4

7

5

6

The:Le/0.3

A:Un/0.2

A:Un/0.3

This:Ce/0.2

dog:chien/1

dog:chien/0.3

cat:chat/0.7

is:est/0.5

is:a/0.5

very:très/0.2

cute:mignon/0.8

very:très/0.2

hungry:faim/0.8

A (Weighted) Finite State Transducer (WFST) is a (W)FSA
with two labels on every transition:

An input label, i [t] ∈ Σ, and

An output label, o[t] ∈ Ω.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The WFST Composition Algorithm

C = A ◦ B

States: The states of C are QC = QA × QB , i.e.,
qC = (qA, qB).

Initial States: iC = (iA, iB)

Final States: FC = FA × FB

Input Alphabet: ΣC = ΣA

Output Alphabet: ΩC = ΩB

Transitions:
1 Every pair qA ∈ QA, tB ∈ EB with i [tB] = ε creates a transition

tC from (qA, p[tB]) to (qA, n[tB]).
2 Every pair tA ∈ EA, qB ∈ QB with o[tA] = ε creates a

transition tC from (p[tA], qB) to (n[tA], qB).
3 Every pair tA ∈ EA, tB ∈ EB with o[tA] = i [tB] creates a

transition tC from (p[tA], p[tB]) to (n[tA], n[tB]).

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Outline

1 Review: WFSA

2 Common FSTs in Automatic Speech Recognition

3 Training a Grammar: Laplace Smoothing

4 Composition

5 Topological Sorting

6 Best Path

7 Re-Estimating WFST Transition Weights

8 Summary

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The Standard FSTs in Automatic Speech Recognition

1 The observation, O

2 The hidden Markov model, H

3 The context, C

4 The lexicon, L

5 The grammar, G

MP5 will use L and G , so those are the ones you need to pay
attention to. At the input we’ll use a transcription T which is
basically T = O ◦ H ◦ C , so you won’t need to remember the
details of those transducers, just their output.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The observation, O

WFST-based speech recognition begins by turning the speech
spectrogram into a WFST.

The input alphabet is Σ =the set of acoustic feature vectors.

The output alphabet is Ω = {1, . . . ,N}, the PDFIDs.

1/b1(~x1)

2/b2(~x1)

N-1/bN−1(~x1)

N/bN (~x1)

1/b1(~x2)

2/b2(~x2)

N-1/bN−1(~x2)

N/bN (~x2)

1/b1(~x3)

2/b2(~x3)

N-1/bN−1(~x3)

N/bN (~x3)

1/b1(~x4)

2/b2(~x4)

N-1/bN−1(~x4)

N/bN (~x4)

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The hidden Markov model, H

Input alphabet is Σ = {1, . . . ,N}, the set of PDFIDs.

Output alphabet, Ω, is a set of context-dependent phone
labels, e.g., triphones: o[t] =/#-a+b/ means the sound an
/a/ makes when preceded by silence, and followed by /b/.

1:ε

4:ε

N − 2:ε

1:ε

2:ε

2:ε

3:ε

3:ε

ε:/#-a+#/

4:ε

5:ε

5:ε

6:ε

6:ε

ε:/#-a+a/

N − 2:ε

N − 1:ε

N − 1:ε

N:ε

N:ε

ε:/#-a+b/

ε:ε

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The Context Transducer, C

Input alphabet, Σ, is context-dependent phone labels, e.g.,
o[t] =/#-a+#/.

Output alphabet, Ω, is context-independent phone labels,
e.g., /a/.

/a-a+a/:[a]
/a-a+#/:[a]

/#-#+#/:[#]
/#-#+a/:[#]

/a-#+a/:[#]

/a-#+#/:[a]/#-a+a/:[#]

/#-a+#/:[#]

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The Lexicon, L

Input alphabet, Σ, is phone labels, e.g., /@/.

Output alphabet, Ω, is words.

[@]:ε

[k]:ε

[d]:ε

[D]:ε

[æ]:ε

[O]:ε

[@]:ε

[I]:ε

[t]:ε

[g]:ε

[s]:ε

ε:A

ε:cat

ε:dog

ε:The

ε:This

ε:ε

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The Grammar, G

Input alphabet, Σ, is words, and

Output alphabet, Ω, is also words.

Edge weights show p(w)

a/p(a)

about/p(about)

above/p(above)

of/p(of)

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The Standard WFSTs

H,C , L and G all start in state 0, and end in state 0. That
way they can make as many complete loops as necessary.

O starts at the beginning of the speech file, and ends at the
end, with NO LOOPS.

The most important edge weights are in O and G , the
acoustic model and language model respectively.

The other transducers (H, C , and L) are used to scale up
from 10ms (scale of xt) to 400ms (scale of w)

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Outline

1 Review: WFSA

2 Common FSTs in Automatic Speech Recognition

3 Training a Grammar: Laplace Smoothing

4 Composition

5 Topological Sorting

6 Best Path

7 Re-Estimating WFST Transition Weights

8 Summary

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

You already know how to train the acoustic model.

How can you train the language model?

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

N-Gram Language Model

An N-gram language model is a model in which the probability of
word wN depends on the N − 1 words that went before it:

p(wN |context) ≡ p(wN |w1,w2, . . . ,wN−1)

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Maximum Likelihood N-Grams

Suppose you have some training texts, for example:

Example Training Texts

when telling of nicholas the second the temptation is to start at
the dramatic end the july nineteen eighteen massacre of him his
entire family his household help and personal physician by which
the triumphant communist movement introduced its rule

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Maximum Likelihood N-Grams

The maximum-likelihood estimates of p(w3|w1,w2) are defined to
be the estimates that maximize the likelihood of the training data,

L =
∏

wi∈training text

p(wi |wi−2,wi−1),

subject to the constraints that∑
wi

p(wi |wi−2,wi−1) = 1, p(wi |wi−2,wi−1) ≥ 0

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Maximum Likelihood N-Grams

The maximum-likelihood estimate turns out to be

p(wi |wi−2,wi−1) =
times wi followed wi−2,wi−1

times wi−2,wi−1 appeared in sequence

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Maximum Likelihood N-Grams: Example

In the following text, the bigram probabilities are

p(wi |wi−1 = the) =


0.2 wi ∈



second

temptation

dramatic

july

triumphant


0 otherwise

Example Training Texts

when telling of nicholas the second the temptation is to start at
the dramatic end the july nineteen eighteen massacre of him his
entire family his household help and personal physician by which
the triumphant communist movement introduced its rule

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The Problem with Maximum Likelihood

The problem with maximum likelihood is those zeros. For example,
suppose you used this model:

p(wi |wi−1 = the) =


0.2 wi ∈



second

temptation

dramatic

july

triumphant


0 otherwise

but what the person actually said was:

where is the cafeteria?

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Laplace Smoothing

Laplace proposed the following solution:

Pretend that every word in the vocabulary has occurred at
least once in every possible context.

This results in the following formula:

p(wi |wi−2,wi−1) =
1+# times wi followed wi−2,wi−1

V + # times wi−2,wi−1 appeared in sequence

where V is the number of distinct words in the vocabulary.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Outline

1 Review: WFSA

2 Common FSTs in Automatic Speech Recognition

3 Training a Grammar: Laplace Smoothing

4 Composition

5 Topological Sorting

6 Best Path

7 Re-Estimating WFST Transition Weights

8 Summary

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The WFST Composition Algorithm

C = A ◦ B

States: The states of C are QC = QA × QB , i.e.,
qC = (qA, qB).

Initial States: iC = (iA, iB)

Final States: FC = FA × FB

Input Alphabet: ΣC = ΣA

Output Alphabet: ΩC = ΩB

Transitions:
1 Every pair qA ∈ QA, tB ∈ EB with i [tB] = ε creates a transition

tC from (qA, p[tB]) to (qA, n[tB]).
2 Every pair tA ∈ EA, qB ∈ QB with o[tA] = ε creates a

transition tC from (p[tA], qB) to (n[tA], qB).
3 Every pair tA ∈ EA, tB ∈ EB with o[tA] = i [tB] creates a

transition tC from (p[tA], p[tB]) to (n[tA], n[tB]).

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Composition Example

For example, suppose we try to compose this two-phoneme
observation with this two-word lexicon:

0 1 2@:@ v:v

a b c
[@]:ε [v]:ε

ε:a

ε:of

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Composition Example

We wind up with the following transducer:

a0 a1 a2

b0 b1 b2

c0 c1 c2

@:ε

v:ε

ε:a ε:a ε:a

ε:of ε:of ε:of

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

WFST Composition: Comments

The ε strings add a lot of transitions that are not connected
to anything!

This is necessary, in order to make sure we get the ε transition
that we actually need.

The only way to keep the connected transition, and eliminate
unconnected ones, is by using a search algorithm to find all
the paths through the graph.

I recommend: do composition first, then implement the
search algorithm as part of topological sorting.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Outline

1 Review: WFSA

2 Common FSTs in Automatic Speech Recognition

3 Training a Grammar: Laplace Smoothing

4 Composition

5 Topological Sorting

6 Best Path

7 Re-Estimating WFST Transition Weights

8 Summary

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Topological Sorting

A graph is topologically sorted if every transition’s end state has
a higher number than its start state:

n[t] ≥ p[t] ∀t

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Topological Sorting: Example

This graph is not topologically sorted:

0 1 2

3 4 5

6 7 8

@:ε

v:ε

ε:a ε:a ε:a

ε:of ε:of ε:of

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Topological Sorting: Example

This graph is topologically sorted:

2 5 8

1 4 7

0 3 6

@:ε

v:ε

ε:a ε:a ε:a

ε:of ε:of ε:of

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Why Topologically Sort?

The following algorithms are all much more efficient if a graph is
first topologically sorted:

best-path

forward algorithm

backward algorithm

Why Not Topologicaly Sort?

A graph with cycles cannot be topologically sorted.

If your code doesn’t use an explored set, you’ll wind up in an
infinite loop.

If your code uses an explored set, after finishing your
topological sort, the graph will still not be topologically sorted
(because there is no topological sort).

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Topological Sort Algorithm = Breadth-First Search
Algorithm = Dijkstra’s Algorithm

Input: WFST A.

Output: WFST B, a copy of A with topologically sorted
states, and with unconnected paths removed.

Required data structures:
1 A queue called the frontier
2 A set called the explored set (optional, but useful).
3 A dict A2B:QA → QB .

Initialization:
1 Put iA into the frontier
2 Create state iB = A2B[iA].

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Topological Sort Algorithm = Breadth-First Search (BFS)
Algorithm = Dijkstra’s Algorithm

While the frontier is not empty:

1 Shift the next state, pA, off the frontier, and put it in the
explored set.

2 For each transition tA starting in pA:
1 Find its end state nA.
2 Look up pB = A2B[pA] and nB = A2B[nA]. If nB does not

exist, create it.
3 Create a transition tB from pB to nB .
4 If nA is not in frontier or explored, put it in frontier.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Topological Sorting: Example

The BFS algorithm topologically sorts, and also eliminates
unconnected transitions, so we end up with:

0 2 4

1

3

@:ε

v:ε

ε:a

ε:of

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Outline

1 Review: WFSA

2 Common FSTs in Automatic Speech Recognition

3 Training a Grammar: Laplace Smoothing

4 Composition

5 Topological Sorting

6 Best Path

7 Re-Estimating WFST Transition Weights

8 Summary

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Algorithm for a WFST

Best-path for a WFST is just like for a WFSA, except we no
longer have to worry about the input string! We assume that
you’ve already composed O ◦ H ◦ C ◦ L ◦ G and topologically
sorted, so that all remaining paths in the graph match the
input string. So best-path becomes very simple:

Initialize with path cost either 1̄ or 0̄:

δ0(i) =

{
1̄ i = initial state

0̄ otherwise

Iterate over states, j ∈ Q:

δ(j) = best
t:n[t]=j

δk−1(p[t])⊗ w [t]

ψ(j) = argbest
t:n[t]=j

δk−1(p[t])⊗ w [t]

Backtrace by reading best transition from the backpointer:

t∗(j) = ψ(j), q∗(t) = p[t∗(j)]

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Algorithm for a Topologically Sorted WFST

The best-path algorithm is very efficient for a topologically sorted
WFST:

1 Sort the transitions in ascending order of their start state.

2 Then step through the transitions in order, checking, for each
transition, whether or not δ(p[t])⊗ w [t] is better than
δ(n[t]). If it is, update δ(n[t]).

3 Topological sort = all transitions for which j = p[t] are sorted
after the transitions for which j = n[t].

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Example

Suppose this graph now has these surprisal weights:

1.2

3.4

0.6

1.8

4.1

0.7

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Example

Start with δ(0) = 0:

0

1.2

3.4

0.6

1.8

4.1

0.7

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Example

Update all the states that can be reached from q = 0:

0 3.4

1.2

1.2

3.4

0.6

1.8

4.1

0.7

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Example

Then, states that can be reached from q = 1:

0 3.0

1.2

1.8

1.2

3.4

0.6

1.8

4.1

0.7

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Example

Then, states that can be reached from q = 2:

0 3.0 7.1

1.2

1.8

1.2

3.4

0.6

1.8

4.1

0.7

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Example

Then, states that can be reached from q = 3:

0 3.0 2.5

1.2

1.8

1.2

3.4

0.6

1.8

4.1

0.7

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Outline

1 Review: WFSA

2 Common FSTs in Automatic Speech Recognition

3 Training a Grammar: Laplace Smoothing

4 Composition

5 Topological Sorting

6 Best Path

7 Re-Estimating WFST Transition Weights

8 Summary

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

What do you re-estimate?

Suppose we want to re-estimate the weight of transition t as the
conditional probability of t given its preceding state, p[t] = j :

w [t] = p(t|p[t])

A reasonable way to re-estimate this would be

w [t] =
E [# times edge t was taken]

E [# times state p[t] = j was reached]

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

What do you re-estimate?

We don’t really want to re-estimate edges in the whole stack,
OHCLG = O ◦ H ◦ C ◦ L ◦ G , because O is just one observation
file. What we really want is to estimate edges of a particular
transducer, e.g., the lexicon.

w [tL] =
E [# times L’s edge tL was taken]

E [# times L’s state p[tL] = j was reached]

=

∑
tOCHLG⊂tL p(tOHCLG)∑

tL:p[tL]=j

∑
tOCHLG⊂tL p(tOHCLG)

1 Find the probability of every transition in the full-stack,
p(tOHCLG),

2 Add over all of the full-stack transitions, tOHCLG , that
correspond to lexicon transition tL (notation: tOHCLG ⊂ tL).

3 Divide by the marginal.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Next question: how do we find p(tOHCLG)?

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Probability of transition t = Sum of probs of paths
including t

j kt

Use π = [0, 1, . . . , j , k , . . .] to mean a path through the whole
transducer. It has partial paths π[: j] = [0, 1, . . . , j] and
π[: j] = [k , . . .]. Then

p(t) =
∑

π includes t

p(π)

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

WFST Forward-Backward Algorithm

j kt

p(t) =
∑

π includes t

p(π) = α(p[t])w [t]β(n[t]),

α(j) =
∑

π[:j] p(π[: j]) is the probability of reaching state j .

w [t] = p(t|p[t]) is the probability of taking transition t, given
that we reached state p[t].

β(k) =
∑

π[k:] p (π[k :]| k) is the probability of making it to
the end of the WFST, given that we made it to state k .

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

FST Forward Algorithm

p[t ′0]

p[t ′1]

p[t ′2]

p[t ′3]

p[t ′4]

j k

t ′0t ′1t ′2t ′3t ′4

t

First, we need to find α(j):

α(j) =
∑
π[:j]

p(π[: j])

=
∑

t′:n[t′]=j

α(p[t ′])w [t ′]

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

FST Backward Algorithm

j k

n[t ′5]

n[t ′6]

n[t ′7]

n[t ′8]

n[t ′9]

t

t ′5t ′6t ′7t ′8t ′9

Then, we need to find β(k):

β(j) =
∑
π[k:]

p(π[k :])

=
∑

t′:p[t′]=k

w [t ′]β(n[t ′])

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Re-estimation: putting it all back together

Then we just re-estimate the probability of every transition tL by
adding up all the transitions t in OHCLG. If it helps you to
remember the idea, we can define a ξ probability, like in HMMs:

ξ(tL) =
∑
t⊂tL

α(p[t])w [t]β(n[t])

w [tL] =
ξ(tL)∑

t′:p[t′]=p[tL]
ξ(t ′)

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Outline

1 Review: WFSA

2 Common FSTs in Automatic Speech Recognition

3 Training a Grammar: Laplace Smoothing

4 Composition

5 Topological Sorting

6 Best Path

7 Re-Estimating WFST Transition Weights

8 Summary

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The Standard FSTs in Automatic Speech Recognition

1 The observation, O, maps acoustic vectors to PDFIDs

2 The hidden Markov model, H, maps PDFIDs to triphones

3 The context transducer, C , maps triphones to phones

4 The lexicon, L, maps phones to words

5 The grammar, G , computes the probability of a word sequence

MP5 will use L and G , so those are the ones you need to pay
attention to.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Laplace Smoothing: Unigram Language Model

Laplace proposed the following solution:

Pretend that every word in the vocabulary has occurred at
least once.

This results in the following formula:

p(w) =
1+# times w occurred

V + # word tokens in training data

where V is the number of distinct words in the vocabulary.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

The WFST Composition Algorithm

C = A ◦ B

States: The states of C are QC = QA × QB , i.e.,
qC = (qA, qB).

Initial States: iC = (iA, iB)

Final States: FC = FA × FB

Input Alphabet: ΣC = ΣA

Output Alphabet: ΩC = ΩB

Transitions:
1 Every pair qA ∈ QA, tB ∈ EB with i [tB] = ε creates a transition

tC from (qA, p[tB]) to (qA, n[tB]).
2 Every pair tA ∈ EA, qB ∈ QB with o[tA] = ε creates a

transition tC from (p[tA], qB) to (n[tA], qB).
3 Every pair tA ∈ EA, tB ∈ EB with o[tA] = i [tB] creates a

transition tC from (p[tA], p[tB]) to (n[tA], n[tB]).

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Topological Sort Algorithm = Breadth-First Search (BFS)
Algorithm = Dijkstra’s Algorithm

While the frontier is not empty:

1 Shift the next state, pA, off the frontier, and put it in the
explored set.

2 For each transition tA starting in pA:
1 Find its end state nA.
2 Look up pB = A2B[pA] and nB = A2B[nA]. If nB does not

exist, create it.
3 Create a transition tB from pB to nB .
4 If nA is not in frontier or explored, put it in frontier.

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Best-Path Algorithm for a WFST

Best-path for a WFST is just like for a WFSA, except we no
longer have to worry about the input string! We assume that
you’ve already composed O ◦ H ◦ C ◦ L ◦ G and topologically
sorted, so that all remaining paths in the graph match the
input string. So best-path becomes very simple:

Initialize with path cost either 1̄ or 0̄:

δ0(i) =

{
1̄ i = initial state

0̄ otherwise

Iterate over states, j ∈ Q:

δ(j) = best
t:n[t]=j

δk−1(p[t])⊗ w [t]

ψ(j) = argbest
t:n[t]=j

δk−1(p[t])⊗ w [t]

Backtrace by reading best transition from the backpointer:

t∗(j) = ψ(j), q∗(t) = p[t∗(j)]

Review Common FSTs Laplace Smoothing Composition Toposort Best Path Re-Estimation Summary

Re-estimation

α(j) =
∑

t′:n[t′]=j

α(p[t ′])w [t ′]

β(j) =
∑

t′:p[t′]=k

w [t ′]β(n[t ′])

ξ(tL) =
∑
t⊂tL

α(p[t])w [t]β(n[t])

w [tL] =
ξ(tL)∑

t′:p[t′]=p[tL]
ξ(t ′)

	Review: WFSA
	Common FSTs in Automatic Speech Recognition
	Training a Grammar: Laplace Smoothing
	Composition
	Topological Sorting
	Best Path
	Re-Estimating WFST Transition Weights
	Summary

