Lecture 16: Weighted Finite State Transducers
(WEST)

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 417: Multimedia Signal Processing, Fall 2020

https://creativecommons.org/licenses/by-sa/4.0/

© Review: WFSA

© Semirings

© How to Handle HMMs: The Weighted Finite State Transducer
@ Composition

© Doing Useful Stuff: The Epsilon Transition

@ Summary

Review
Outline

© Review: WFSA

Review
©0000

Weighted Finite State Acceptors

@\dCﬁg‘/l very/O 2
|s/1

The/0.3

A/0.2

dog/0.3 cute/O.ﬁl@

A/0.3 hungry/0.4

This/0.2 Qcat/m @

@ An FSA specifies a set of strings. A string is in the set if it
corresponds to a valid path from start to end, and not
otherwise.

@ A WFSA also specifies a probability mass function over the
set.

Review
0e000

Every Markov Model is a WFSA

3/331

A Markov Model (but not an HMM!) may be interpreted as a
WFSA: just assign a label to each edge. The label might just be
the state number, or it might be something more useful.

Review
00®00

Best-Path Algorithm for a WFSA

Given:

Input string, S = [s1,...,s7]. For example, the string “A dog
is very very hungry” has T =5 words.

Edges, e, each have predecessor state p[e] € Q, next state
nle] € Q, weight w[e] € R and label /[e] € X.

Initialize:
] 1 /= initial state
do(i) = {

0 otherwise

Iterate:
6:(j) = best = d:1(ple]) ® wle]
e:nle]=j,l[e]=s:
Ye(j) = argbest d:_1(p[e]) @ wle]
e:nle]=j,l[e]=st
Backtrace:

ef =9¥(q9iy1), qi = plef]

Review
[ee]eY To)

Determinization

A WFSA is said to be deterministic if, for any given (predecessor
state p[e], label £[e]), there is at most one such edge. For
example, this WFSA is not deterministic.

The/0.3

NS
dog/0.3 @ is/1 >%cute/O.ﬁl\E})

A/0.3 hungry/0.4

. Q/cat/O.? @

Review
ooooe

How to Determinize a WFSA

The only general algorithm for determinizing a WFSA is the
following exponential-time algorithm:
o For every state in A, for every set of edges ey, ..., ek that all
have the same label:
o Create a new edge, e, with weight wle] = w[e]] @ - - - ® wlek].
o Create a brand new successor state n[e].

e For every edge leaving any of the original successor states
nlex], 1 < k < K, whose label is unique:

o Copy it to n[e], ® its weight by w(ex]/w]e]

o For every set of edges leaving n[ex] that all have the same
label:

o Recurse!

Semirings

Outline

© Semirings

Semirings
°

Semirings

A semiring is a set of numbers, over which it's possible to define a
operators ® and @, and identity elements 1 and 0.
@ The Probability Semiring is the set of non-negative real
numbers Ry, with ® = -, & = +, 1=1,and 0 =0.
@ The Log Semiring is the extended reals R U {oco}, with
® =+, ® = — logsumexp(—, —), 1 =0, and 0 = oc.
@ The Tropical Semiring is just the log semiring, but with
@ = min. In other words, instead of adding the probabilities
of two paths, we choose the best path:

a® b= min(a, b)

Mohri et al. (2001) formalize it like this: a semiring is
K ={K,®,®,0,1} where K is a set of numbers.

Outline

© How to Handle HMMs: The Weighted Finite State Transducer

WEFSTs

9000000

Weighted Finite State Transducers

The:Le/0.3 very:tres/0.2
dog: ch|en/1
A:Un/0.2
dog: ch|en/0 3 is:est/0. 5 cute mlgnon/OQ
|s a/O 5
A: U”/O3 ; hungry falm/OQ
This:Ce/0. 2./ cat:chat/0.7 very: tres/O 2

A (Weighted) Finite State Transducer (WFST) is a (W)FSA
with two labels on every edge:

@ An input label, i € ¥, and
@ An output label, o € Q.

What it's for

@ An FST specifies a mapping between two sets of strings.

e The input set is Z C ¥*, where £* is the set of all strings
containing zero or more letters from the alphabet .
e The output set is O C Q*.

o For every i = [i1,...,iT] € Z, the FST specifies one or more
possible translations & = [o1,...,07] € O.

@ A WFST also specifies a probability mass function over the
translations. The example on the previous slide was
normalized to compute a joint pmf p(i, d), but other WFSAs

might be normalized to compute a conditional pmf p(o]i), or
something else.

WEFSTs
00®0000

Normalizing for Conditional Probability

Here is a WFST whose weights are normalized to compute p(&]/):
The:Le/1 very:trés/1
dog:chien/1

dog: chlen/l istest /0. 5 cute:mignon/@
|s a/O 5 -

hungry:faim/1

very:trés/1
cat:chat/0.9 yires/

A:Un/1

A:Un/cat: feIm/O 1

This:Ce/1”

WEFSTs
[eleleY Yolole}

Normalizing for Conditional Probability

Normalizing for conditional probability allows us to separately
represent the two parts of a hidden Markov model.

© The transition probabilities, aj;, are the weights on a WEFSA.

@ The observation probabilities, bj(f(}), are the weights on a
WEFST.

WEFSTs

0000e00

WEFSA: Symbols on the edges are called PDFIDs

It is no longer useful to say that “the labels on the edges are the
state numbers.” Instead, let's call them pdfids.

1/a13

1/211

3/831

WEFSTs
000000

Observation Probabilities as Conditional Edge Weights

Now we can create a new WFST whose output symbols are
pdfids j, whose input symbols are observations, X;, and whose
weights are the observation probabilities, b;(X;).

X1:1/b1 (%) 32:1/b1(%2)

WEFSTs
[elelelelolol }

Hooray! We've almost re-created the HMM!

So far we have:

@ You can create a WFSA whose weights are the transition
probabilities.

@ You can create a WFST whose weights are the observation
probabilities.

Here are the problems:
@ How can we combine them?

@ Even if we could combine them, can this do anything that an
HMM couldn't already do?

Composition

Outline

@ Composition

Composition
®000

Composition

The main reason to use WFSTs is an operator called
“composition.” Suppose you have
@ A WFST, R, that translates strings a € A into strings b € B
with joint probability p(a, b).
@ Another WFST, S, that translates strings b € B into strings
¢ € C with conditional probability p(c|b).

The operation T = Ro S gives you a WFST, T, that translates
strings a € A into strings ¢ € C with joint probability

pla,c) = 3 p(a, b)p(c|b)

beB

Composition
000

The WFST Composition Algorithm

@ Initialize: The initial state of T is a pair, it = (i, is),
encoding the initial states of both R and S.
@ Iterate: While there is any state g7 = (ggr, gs) with edges
(er = a: b,es = b: c¢) that have not yet been copied to er,
@ Create a new edge et with next state n[er] = (n[eg], nles])
and labels i[e7] : o[er] = i[eg] : o[es] = a: c.
@ |If an edge with the same n[er], i[eT], and o[er] already exists,
then update its weight:

wler] = wler] @ (w(er] ® wles])
@ If not, create a new edge with
W[eT] = w[eR] ® W[es]

© Terminate: A state g7 = (gr, gs) is a final state if both gg
and gs are final states.

Composition
coeo

Composition Example: HMM

1/a13

3/a31

Composition Example: HMM

)?411/313b1()?4)

)?422/223[)2()?4)

Epsilon

Outline

© Doing Useful Stuff: The Epsilon Transition

Epsilon
©00000

Doing Useful Stuff: The Epsilon Transition

@ There's only one more thing you need to do useful stuff:
nothing.

@ To be more precise: we can use the label € (pronounced
“epsilon”) to mean “nothing at all.”

Epsilon
[e] Yelolole}

Example: Epsilon Transitions in the Pronlex

@ A “pronlex" (pronunciation lexicon) is a WFST that maps
from phoneme strings to words.

@ A "phoneme string” is a sequence of many labels. A word is
just one label. The extra labels in the output side of the
WEST all use €, to mean that they don't generate any extra
output string.

Example Pronlex

Epsilon
000®00

Example: Speech-to-Text Translation

@ For example, suppose you have some English speech. You'd
like to convert it to French text.

@ Suppose you have an English pronlex, L, that maps English
phonemes to words.

@ You also have a translator, G, that maps English words to
French words.

@ Then
T=LoG

maps from English phonemes to French words.

Epsilon
oooo0e

Example: Speech-to-Text Translation

Suppose you have:
@ Observer, B, maps from X; to j, with weights b;(X;).
e HMM, H, maps from i and j to phonemes, with weights a;;.
@ Pronlex, L, maps from phonemes to English words.
@ Grammar, G, maps from English words to French words.

Then the translation of audio frames into French words is given by

BoHoloG

Summary

Outline

@ Summary

Summary

[Je}

Weighted Finite State Transducers

The:Le/0.3 very:tres/0.2
dog: ch|en/1
A:Un/0.2
dog: ch|en/0 3 is:est/0. 5 cute mlgnon/OQ
|s a/O 5
A: U”/O3 ; hungry falm/OQ
This:Ce/0. 2./ cat:chat/0.7 very: tres/O 2

A (Weighted) Finite State Transducer (WFST) is a (W)FSA
with two labels on every edge:

@ An input label, i € ¥, and
@ An output label, o € Q.

Summary
oce

The WFST Composition Algorithm

T=RoS

O Initialize: The initial state of T is a pair, it = (ir, is),
encoding the initial states of both R and S.

@ lterate: Each edge et = (eg, es):

Starts at pler] = (p[er], ples])

Has the edge label i[eg] : ofes].

Ends at nler] = (n[er], nles]).

Has the weight wlet] = w(er] ® w[es], possibly summed (@)

over nondeterministic (eg, es) pairs.

© Terminate: A state g7 = (gg, gs) is a final state if both gg
and gs are final states.

	Review: WFSA
	Semirings
	How to Handle HMMs: The Weighted Finite State Transducer
	Composition
	Doing Useful Stuff: The Epsilon Transition
	Summary

