
Review WFSA Multiplication Best Path Addition Determinization Summary

Lecture 15: Weighted Finite State Acceptors
(WFSA)

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 417: Multimedia Signal Processing, Fall 2020

https://creativecommons.org/licenses/by-sa/4.0/


Review WFSA Multiplication Best Path Addition Determinization Summary

1 Review: Hidden Markov Models

2 Weighted Finite State Acceptors

3 Multiplication

4 Best Path

5 Addition

6 Determinization

7 Summary



Review WFSA Multiplication Best Path Addition Determinization Summary

Outline

1 Review: Hidden Markov Models

2 Weighted Finite State Acceptors

3 Multiplication

4 Best Path

5 Addition

6 Determinization

7 Summary



Review WFSA Multiplication Best Path Addition Determinization Summary

The Three Problems for an HMM

1 2 3

~x ~x ~x

a11
a12

a13

b1(~x)

a22

a21

a23

b2(~x)

a33

a32

a31
b3(~x)

πi = p(q1 = i) is called the initial state probability.

aij = p(qt = j |qt−1 = i) is called the transition probability.

bj(~x) = p(~xt = ~x |qt = j) is called the observation
probability.



Review WFSA Multiplication Best Path Addition Determinization Summary

Recognition: The Forward Algorithm

1 Initialize:
α1(i) = πibi (~x1)

2 Iterate:

αt(j) =
N∑
i=1

p(qt−1 = i |~x1, . . . , ~xt−1)aijbj(~xt)

=
N∑
i=1

α̂t−1(i)aijbj(~xt)

3 Terminate:

ln p(X |Λ) =
N∑
j=1

αT (j)



Review WFSA Multiplication Best Path Addition Determinization Summary

Segmentation: The Log-Viterbi Algorithm

1 Initialize:
ln δ1(i) = lnπi + ln bi (~x1)

2 Iterate:

ln δt(j) =
N

max
i=1

(ln δt−1(i) + ln aij + ln bj(~xt))

ψt(j) =
N

argmax
i=1

(ln δt−1(i) + ln aij + ln bj(~xt))

3 Terminate: Choose the known final state q∗T .

4 Backtrace:

q∗t = ψt+1

(
q∗t+1

)



Review WFSA Multiplication Best Path Addition Determinization Summary

Outline

1 Review: Hidden Markov Models

2 Weighted Finite State Acceptors

3 Multiplication

4 Best Path

5 Addition

6 Determinization

7 Summary



Review WFSA Multiplication Best Path Addition Determinization Summary

Finite State Acceptors

All of the material in today’s lecture comes from this article:



Review WFSA Multiplication Best Path Addition Determinization Summary

Finite State Acceptors

0

1

2

3 4 5

6

The

A

A

This

dog

dog

cat

is

very

cute

hungry

A Finite State Acceptor (FSA), A = {Σ,Q,E , i ,F}, is a finite
state machine capable of accepting any string in a (possibly
infinite) set.

Q is a set of states, and E a set of edges.

Σ is an alphabet of labels that may appear on edges.

i is the initial state, shown with a thick border. F is the set of
final states, shown with doubled borders.



Review WFSA Multiplication Best Path Addition Determinization Summary

Weighted Finite State Acceptors

0

1

2

3 4 5 0.3

6 0.7

The/0.3

A/0.2

A/0.3
This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4

A Weighted Finite State Acceptor (WFSA) is an FSA with
weights on the edges.

The edge weights are usually interpreted as conditional
probabilities (of the edge given the state), but other
interpretations are possible.

It’s also possible to put probabilities on the final states, as
shown in this figure (but we don’t do this very often).



Review WFSA Multiplication Best Path Addition Determinization Summary

What it’s for

An FSA specifies a set of strings. A string is in the set if it
corresponds to a valid path from start to end, and not
otherwise.

A WFSA also specifies a probability mass function over the
set.



Review WFSA Multiplication Best Path Addition Determinization Summary

Every Markov Model is a WFSA

1 2 31/a11

1/a12

1/a13

2/a22

2/a21

2/a23
3/a33

3/a32

3/a31

A Markov Model (but not an HMM!) may be interpreted as a
WFSA: just assign a label to each edge. The label might just be
the state number, or it might be something more useful.



Review WFSA Multiplication Best Path Addition Determinization Summary

Outline

1 Review: Hidden Markov Models

2 Weighted Finite State Acceptors

3 Multiplication

4 Best Path

5 Addition

6 Determinization

7 Summary



Review WFSA Multiplication Best Path Addition Determinization Summary

Multiplication: Accumulate on a Path

0

1

2

3 4 5

6

The/0.3

A/0.2

A/0.3
This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4

Multiplication is used to accumulate the weights on a single path
through the WFSA. For example, there are two paths matching the
sentence “A dog is hungry” Their path weights are

p(Path through state 1) = (0.2)(1)(1)(0.4) = 0.08

p(Path through state 2) = (0.3)(0.3)(1)(0.4) = 0.036



Review WFSA Multiplication Best Path Addition Determinization Summary

Negative Log Probabilities

WFSAs have floating point underflow problems. The standard
solution is to perform all computations using negative log
probabilities. Negative log probability (− log p(A)) goes by many
names:

“Surprisal,” because you are more surprised if something
unlikely happens.

“Information,” because low-probability events are more
informative.

“Cost,” because it costs more to take a low-probability path.



Review WFSA Multiplication Best Path Addition Determinization Summary

WFSA with Negative Log Probabilities

0

1

2

3 4 5

6

The/1.2

A/1.6

A/1.2
This/1.6

dog/0

dog/1.2

cat/0.4

is/0

very/1.6

cute/0.9

hungry/0.9

Adding Negative Log Probabilities accumulates the costs on a
single path. For example, there are two paths matching the
sentence “A dog is hungry” Their path weights are

− ln p(Path through state 1) = 1.6 + 0 + 0 + 0.9 = 2.5

− ln p(Path through state 2) = 1.2 + 1.2 + 0 + 0.9 = 3.3



Review WFSA Multiplication Best Path Addition Determinization Summary

Otimes Notation

In designing a WFSA, we want our design to be robust, even if we
suddenly change between probabilities↔negative log probabilities.
Instead of using the standard real-valued “times” operator, and the
constants “1” and “0,” we use overloaded operators ⊗, 1̄, and 0̄
whose behavior is determined by the type of their inputs:

If the inputs are probabilities, then ⊗ means “multiply,” 1̄
means “one,” and 0̄ means”zero.” Thus, for example

(0.2)⊗ (0.7)⊗ 1̄ = 0.2 · 0.7 · 1 = 0.14

(0.2)⊗ 0̄ = 0.2 · 0 = 0

If the inputs are negative log probabilities, then ⊗ means
“add,” 1̄ means − ln(1) = 0, and 0̄ means − ln(0) =∞. Thus

(1.6)⊗ (0.4)⊗ 1̄ = 1.6 + 0.4 + 0 = 2.0

(1.6)⊗ 0̄ = 1.6 +∞ =∞



Review WFSA Multiplication Best Path Addition Determinization Summary

Outline

1 Review: Hidden Markov Models

2 Weighted Finite State Acceptors

3 Multiplication

4 Best Path

5 Addition

6 Determinization

7 Summary



Review WFSA Multiplication Best Path Addition Determinization Summary

Finding the Best Path

0

1

2

3 4 5

6

The/0.3

A/0.2

A/0.3
This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4

Often, given an input string, we want to find the best path
matching that string. This is done using a version of the Viterbi
algorithm.



Review WFSA Multiplication Best Path Addition Determinization Summary

Best-Path Algorithm for a WFSA

Given:

Input string, S = [s1, . . . , sT ]. For example, the string “A dog
is very very hungry” has T = 5 words.

Edges, e, each have predecessor state p[e] ∈ Q, next state
n[e] ∈ Q, weight w [e] ∈ R and label `[e] ∈ Σ.

Initialize:

δ0(i) =

{
1̄ i = initial state

0̄ otherwise

Iterate:

δt(j) = best
e:n[e]=j ,`[e]=st

δt−1(p[e])⊗ w [e]

ψt(j) = argbest
e:n[e]=j ,`[e]=st

δt−1(p[e])⊗ w [e]

Backtrace:
e∗t = ψ(q∗t+1), q∗t = p[e∗t ]



Review WFSA Multiplication Best Path Addition Determinization Summary

Best Path: Probabilities

0

1

2

3 4 5

6

The/0.3

A/0.2

A/0.3
This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4

After the first two words, “A dog. . . ” we have to compare two
possible paths:

δ2(3) = best (0.2⊗ 1, 0.3⊗ 0.3) = best (0.2, 0.09) = 0.2



Review WFSA Multiplication Best Path Addition Determinization Summary

Best Path: Log Probabilities

0

1

2

3 4 5

6

The/1.2

A/1.6

A/1.2
This/1.6

dog/0

dog/1.2

cat/0.4

is/0

very/1.6

cute/0.9

hungry/0.9

After the first two words, “A dog. . . ” we have to compare two
possible paths:

δ2(3) = best (1.6⊗ 0, 1.2⊗ 1.2) = best (1.6, 2.4) = 1.6



Review WFSA Multiplication Best Path Addition Determinization Summary

Outline

1 Review: Hidden Markov Models

2 Weighted Finite State Acceptors

3 Multiplication

4 Best Path

5 Addition

6 Determinization

7 Summary



Review WFSA Multiplication Best Path Addition Determinization Summary

Addition: Combine Paths

0

1

2

3 4 5

6

The/0.3

A/0.2

A/0.3
This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4

Addition is used to combine the weights of two different paths.
For example, the total probability of the sentence “A dog is
hungry” is the sum of the probabilities of its two paths:

p(A dog is hungry) = p(Path 1)+p(Path 2) = 0.08+0.036 = 0.116



Review WFSA Multiplication Best Path Addition Determinization Summary

The Oplus Operator

When we convert from probabilities to surprisals, instead of using
ordinary (multiplication,addition,1,0), we want to use overloaded
operators (⊗,⊕,1̄,0̄), whose behavior is determined by the type of
their inputs:

If the WFSA is using probability, then ⊕ means “addition,”
and 0̄ means “zero.” Thus, for example

(0.08)⊕ (0.06)⊕ 0̄ = 0.08 + 0.06 + 0 = 0.14

If the WFSA is using negative log probability, then ⊕ and 0̄
should be redefined in some way that gives the desired result.
The desired result is that:

(− ln(0.08))⊕ (− ln(0.06))⊕ 0̄ = − ln(0.14)



Review WFSA Multiplication Best Path Addition Determinization Summary

The Negative Logsumexp Function

Suppose a and b are negative log probabilities:

a = − ln p(A), b = − ln p(B)

The most computationally efficient way to implement the ⊕
operator is also the one that’s easiest to understand:

a⊕ b = − ln (p(A) + p(B)) = − ln
(
e−a + e−b

)
This function is used so often, in machine learning, that it has a
special name. It is called the logsumexp function:

a⊕ b = − logsumexp(−a,−b) = − ln
(
e−a + e−b

)



Review WFSA Multiplication Best Path Addition Determinization Summary

Logsumexp and Floating Point Underflow

The most computationally efficient way to implement logsumexp
is also the easiest to understand. It is just:

logsumexp(x , y) = ln (ex + ey )

Unfortunately, that formula may suffer from floating point
overflow, e.g., if x > 100 or y > 100. The following alternative
implementation is guaranteed to avoid floating point overflow:

m = max(x , y)

logsumexp(x , y) = m + ln
(
ex−m + ey−m

)



Review WFSA Multiplication Best Path Addition Determinization Summary

Logsumexp and Max

The following implementation of logsumexmp avoids floating point
overflow:

m = max(x , y)

logsumexp(x , y) = m + ln
(
ex−m + ey−m

)
For example, suppose x > y , then we get
logsumexp(x , y) = x + ln (1 + ey−x). The second term inside the
parentheses is 0 ≤ ey−x ≤ 1, so

max(x , y) ≤ logsumexp(x , y) ≤ max(x , y) + ln(2)

For this reason, logsumexp is a differentiable approximation of the
max operator.



Review WFSA Multiplication Best Path Addition Determinization Summary

Addition: Combine Paths

0

1

2

3 4 5

6

The/1.2

A/1.6

A/1.2
This/1.6

dog/0

dog/1.2

cat/0.4

is/0

very/1.6

cute/0.9

hungry/0.9

Negative Logsumexp is used to combine the surprisals of two
different paths. For example, the total surprisal of the sentence “A
dog is hungry” is the negative logsumexp of the surprisals of its
two paths:

p(A dog is hungry) = (1.6⊗ 0⊗ 0⊗ 0.9)⊕ (1.2⊗ 1.2⊗ 0⊗ 0.9)

= 2.5⊕ 3.3 = 2.2



Review WFSA Multiplication Best Path Addition Determinization Summary

0̄: The identity element of ⊕

The ⊕ operator, for surprisal weights, is a negative logsumexp:

a⊕ b = − logsumexp(−a,−b) ≤ min(a, b)

The identity element, 0̄, is the element such that

a⊕ 0̄ = a

If you work through the definition of the logsumexp function, you
can discover that its identity element is

0̄ = − ln(0) = +∞



Review WFSA Multiplication Best Path Addition Determinization Summary

Outline

1 Review: Hidden Markov Models

2 Weighted Finite State Acceptors

3 Multiplication

4 Best Path

5 Addition

6 Determinization

7 Summary



Review WFSA Multiplication Best Path Addition Determinization Summary

Determinization

A WFSA is said to be deterministic if, for any given
(predecessor state p[e], label `[e]), there is at most one such
edge.

If a WFSA is deterministic, then for any given string
S = [s1, . . . , sT ], there is at most one path.

Determinism makes many other computations very efficient.
For example, the best-path algorithm is O{T}.



Review WFSA Multiplication Best Path Addition Determinization Summary

A Non-Deterministic WFSA: Example

This WFSA is not deterministic, because there are two different
paths leaving state p[e] = 0 that both have the label `[e] = “A”:

0

1

2

3 4 5

6

The/0.3

A/0.2

A/0.3
This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4



Review WFSA Multiplication Best Path Addition Determinization Summary

Determinizing a WFSA

Determinizing a WFSA is the creation of a new WFSA such that:

If A has one or more paths matching any given string,
S = [s1, . . . , sT ], then A′ must have exactly one such path.

The path weight (probability, surprisal) in A′ must be the sum
(⊕) of the weights of all of the paths in A.



Review WFSA Multiplication Best Path Addition Determinization Summary

How to Determinize a WFSA

The only general algorithm for determinizing a WFSA is the
following exponential-time algorithm:

For every state in A, for every set of edges e1, . . . , eK that all
have the same label:

Create a new edge, e, with weight w [e] = w [e1]⊕ · · · ⊕ w [eK ].
Create a brand new successor state n[e].
For every edge leaving any of the original successor states
n[ek ], 1 ≤ k ≤ K , whose label is unique:

Copy it to n[e], ⊗ its weight by w [ek ]/w [e]

For every set of edges leaving n[ek ] that all have the same
label:

Recurse!



Review WFSA Multiplication Best Path Addition Determinization Summary

How to Determinize a WFSA: Example

0

1

2

3 4 5

6

The/0.3

A/0.2

A/0.3
This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4

1 ⊕ together the two edges with `[e] =”A”, and create a new
state n[e] for them.

2 Copy the successor edge “cat” to the new state.

3 ⊕ together the two “dog” successor edges, and copy to the
new state.



Review WFSA Multiplication Best Path Addition Determinization Summary

How to Determinize a WFSA: Example

0

1

2

3 4 5

6

7

The/0.3

A/0.5

This/0.2

dog/1

dog/0.3

cat/0.7

is/1

very/0.2

cute/0.4

hungry/0.4

dog/0.58

cat/0.42

(
0.2

0.5

)
(1) +

(
0.3

0.5

)
0.3 = 0.58,

(
0.3

0.5

)
0.7 = 0.42



Review WFSA Multiplication Best Path Addition Determinization Summary

Outline

1 Review: Hidden Markov Models

2 Weighted Finite State Acceptors

3 Multiplication

4 Best Path

5 Addition

6 Determinization

7 Summary



Review WFSA Multiplication Best Path Addition Determinization Summary

Summary

A weighted finite state automaton (WFSA) is a graph (states
and edges), each of whose edges carries both a label and a
weight.

The weights may be interpreted as probabilities, or negative
log probabilities (surprisals or costs).

In order to make the math robust to changes between
probability↔surprisal, we define overloaded operators ⊗, ⊕, 1̄,
0̄, and best whose behavior is determined by the type of their
inputs.

The best-path algorithm is just Viterbi, timed according to
the input string.

A deterministic WFSA has, for each (p[e], `[e]) pair, at most
one edge.


	Review: Hidden Markov Models
	Weighted Finite State Acceptors
	Multiplication
	Best Path
	Addition
	Determinization
	Summary

