
Review Recognition Segmentation Training Summary

Lecture 14: Log Viterbi and Scaled
Forward-Backward

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 417: Multimedia Signal Processing, Fall 2020

https://creativecommons.org/licenses/by-sa/4.0/

Review Recognition Segmentation Training Summary

1 Review: Hidden Markov Models

2 Recognition: The Scaled Forward Algorithm

3 Segmentation: The Viterbi Algorithm

4 Training: The Scaled Backward Algorithm

5 Summary

Review Recognition Segmentation Training Summary

Outline

1 Review: Hidden Markov Models

2 Recognition: The Scaled Forward Algorithm

3 Segmentation: The Viterbi Algorithm

4 Training: The Scaled Backward Algorithm

5 Summary

Review Recognition Segmentation Training Summary

The Three Problems for an HMM

1 2 3

~x ~x ~x

a11
a12

a13

b1(~x)

a22

a21

a23

b2(~x)

a33

a32

a31
b3(~x)

1 Recognition: Given two different HMMs, Λ1 and Λ2, and an
observation sequence X . Which HMM was more likely to have
produced X? In other words, p(X |Λ1) > p(X |Λ2)?

2 Segmentation: What is p(Q|X ,Λ)?

3 Training: Given an initial HMM Λ, and an observation
sequence X , can we find Λ′ such that p(X |Λ′) > p(X |Λ)?

Review Recognition Segmentation Training Summary

Outline

1 Review: Hidden Markov Models

2 Recognition: The Scaled Forward Algorithm

3 Segmentation: The Viterbi Algorithm

4 Training: The Scaled Backward Algorithm

5 Summary

Review Recognition Segmentation Training Summary

The Forward Algorithm

Definition: αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ). Computation:

1 Initialize:
α1(i) = πibi (~x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(X |Λ) =
N∑
i=1

αT (i)

Review Recognition Segmentation Training Summary

Numerical Issues

The forward algorithm is susceptible to massive floating-point
underflow problems. Consider this equation:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt)

=
N∑

q1=1

· · ·
N∑

qt−1=1

πq1bq1(~x1) · · · aqt−1qtbqt (~xt)

First, suppose that bq(x) is discrete, with k ∈ {1, . . . ,K}.
Suppose K ≈ 1000 and T ≈ 100, in that case, each αt(j) is:

The sum of NT different terms, each of which is

the product of T factors, each of which is

the product of two probabilities: aij ∼ 1
N times bj(x) ∼ 1

K , so

αT (j) ≈ NT

(
1

NK

)T

≈ 1

KT
≈ 10−300

Review Recognition Segmentation Training Summary

Numerical Issues

Softmax observation probabilities are scaled similarly to discrete
pmfs (bj(~x) ∼ 1

1000), but Gaussians are much worse. Suppose that
bj(~x) is Gaussian:

bj(~x) =
1∏D

d=1

√
2πσ2jd

e
− 1

2

∑D
d=1

(xd−µjd)
2

σ2
jd

Suppose that D ≈ 30.

On average, E

[
(xd−µjd)2

σ2
jd

]
= 1,

so on average, bj(~x) = 1
(2π)15

e−15 = 3× 10−19.

Review Recognition Segmentation Training Summary

How to Solve Numerical Issues

Single-precision floating point can represent numbers as small
as 2−127.

One time step of the forward algorithm can be computed with
no problem, but 100 time steps is impossible.

Solution: re-normalize αt(j) to α̂t(j) after each time step, so
that

∑
j α̂t(j) = 1.

Review Recognition Segmentation Training Summary

The Scaled Forward Algorithm

1 Initialize:

α̂1(i) =
πibi (~x1)∑N
`=1 π`b`(~x1)

2 Iterate:

α̂t(j) =

∑N
i=1 α̂t−1(i)aijbj(~xt)∑N

`=1

∑N
i=1 α̂t−1(i)ai`b`(~xt)

3 Terminate:
p(X |Λ) =????

Review Recognition Segmentation Training Summary

What exactly is alpha-hat?

Let’s look at this in more detail. αt(j) is defined to be
p(~x1, . . . , ~xt , qt = j |Λ). Let’s define a “scaling term,” Gt , equal to
the denominator in the scaled forward algorithm. So, for example,
at time t = 1 we have:

G1 =
N∑
`=1

α1(`) =
N∑
`=1

p(~x1, q1 = `|Λ) = p(~x1|Λ)

and therefore

α̂1(i) =
α1(i)

G1
=

p(~x1, q1 = i |Λ)

p(~x1|Λ)
= p(q1 = i |~x1,Λ)

Review Recognition Segmentation Training Summary

What exactly is alpha-hat?

At time t, we need a new intermediate variable. Let’s call it α̃t(j):

α̃t(j) =
N∑
i=1

α̂t−1(i)aijbj(~xt)

=
N∑
i=1

p(qt−1 = i |~x1, . . . , ~xt−1,Λ)p(qt = j |qt−1 = i)p(~xt |qt = j)

= p(qt = j , ~xt |~x1, . . . , ~xt−1,Λ)

Gt =
N∑
`=1

α̃t(`) = p(~xt |~x1, . . . , ~xt−1,Λ)

α̂t(j) =
α̃t(j)

Gt
=

p(~xt , qt = j |~x1, . . . , ~xt−1,Λ)

p(~xt |~x1, . . . , ~xt−1,Λ)
= p(qt = j |~x1, . . . , ~xt ,Λ)

Review Recognition Segmentation Training Summary

Scaled Forward Algorithm: The Variables

So we have not just one, but two new variables:

1 The scaled forward probability:

α̂t(j) = p(qt = j |~x1, . . . , ~xt ,Λ)

2 The scaling factor:

Gt = p(~xt |~x1, . . . , ~xt−1,Λ)

Review Recognition Segmentation Training Summary

The Solution

The second of those variables is interesting because we want
p(X |Λ), which we can now get from the Gts—we no longer
actually need the αs for this!

p(X |Λ) = p(~x1|Λ)p(~x2|~x1,Λ)p(~x3|~x1, ~x2,Λ) · · · =
T∏
t=1

Gt

But that’s still not useful, because if each Gt ∼ 10−19, then
multiplying them all together will result in floating point underflow.
So instead, it is better to compute

ln p(X |Λ) =
T∑
t=1

lnGt

Review Recognition Segmentation Training Summary

The Scaled Forward Algorithm

1 Initialize:

α̂1(i) =
1

G1
πibi (~x1)

2 Iterate:

α̂t(j) =
1

Gt

N∑
i=1

α̂t−1(i)aijbj(~xt)

3 Terminate:

ln p(X |Λ) =
T∑
t=1

lnGt

Review Recognition Segmentation Training Summary

Outline

1 Review: Hidden Markov Models

2 Recognition: The Scaled Forward Algorithm

3 Segmentation: The Viterbi Algorithm

4 Training: The Scaled Backward Algorithm

5 Summary

Review Recognition Segmentation Training Summary

What About State Sequences?

Remember when we first derived γt(i), I pointed out a
problem: γt(i) only tells us about one frame at a time! It
doesn’t tell us anything about the probability of a sequence of
states, covering a sequence of frames.

Today, let’s find a complete solution. Let’s find the most
likely state sequence covering the entire utterance:

Q∗ = argmax
Q

p(Q,X |Λ)

Review Recognition Segmentation Training Summary

The Max-Probability State Sequence

The problem of finding the max-probability state sequence is just
as hard as the problem of finding p(X |Λ), for exactly the same
reason:

max
Q

p(Q,X |Λ) =
N

max
qT=1

· · · N
max
q1=1

p(Q,X |Λ)

which has complexity O
{
NT
}

.

Review Recognition Segmentation Training Summary

The Viterbi Algorithm

Remember that we solved the recognition probability using a
divide-and-conquer kind of dynamic programming algorithm, with
the intermediate variable

αt(j) ≡ p(~x1, . . . , ~xt , qt = j |Λ)

=
∑
qt−1

· · ·
∑
q1

p(~x1, . . . , ~xt , q1, . . . , qt−1, qt = j |Λ)

The segmentation problem is solved using a similar dynamic
programming algorithm called the Viterbi algorithm, with a slightly
different intermediate variable:

δt(j) ≡ max
qt−1

· · ·max
q1

p(~x1, . . . , ~xt , q1, . . . , qt−1, qt = j |Λ)

Review Recognition Segmentation Training Summary

The Viterbi Algorithm

Keeping in mind the definition
δt(j) ≡ maxqt−1 · · ·maxq1 p(~x1, . . . , ~xt , q1, . . . , qt−1, qt = j |Λ), we
can devise an efficient algorithm to compute it:

1 Initialize:
δ1(i) = πibi (~x1)

2 Iterate:

δt(j) =
N

max
i=1

δt−1(i)aijbj(~xt)

3 Terminate: The maximum-probability final state is
q∗T = argmaxNj=1 δT (j). But what are the best states at all of
the previous time steps?

Review Recognition Segmentation Training Summary

Backtracing

We can find the optimum states at all times, q∗t , by keeping a
backpointer ψt(j) from every time step. The backpointer points
to the state at time t − 1 that is most likely to have preceded state
j at time t:

ψt(j) = argmax
i
· · ·max

q1
p(~x1, . . . , ~xt , q1, . . . , qt−1 = i , qt = j |Λ)

=
N

argmax
i=1

δt−1(i)aijbj(~xt)

Review Recognition Segmentation Training Summary

Backtracing

If we have the backpointers available, then we can get the entire
maximum-probability state sequence by backtracing after we
terminate:

Terminate: Once we get to time t = T , we choose the most
probable final state.

If we already know which state we want to end in, then we just
choose that state as q∗T .
If we don’t already know, then we choose q∗T = argmaxj δT (j)

Backtrace: Having found the final state, we work backward,
by way of the backpointers, ψt(j):

q∗t = ψt+1

(
q∗t+1

)
, T − 1 ≥ t ≥ 1

Review Recognition Segmentation Training Summary

The Viterbi Algorithm

1 Initialize:
δ1(i) = πibi (~x1)

2 Iterate:

δt(j) =
N

max
i=1

δt−1(i)aijbj(~xt)

ψt(j) =
N

argmax
i=1

δt−1(i)aijbj(~xt)

3 Terminate:

q∗T =
N

argmax
j=1

δT (j)

4 Backtrace:

q∗t = ψt+1

(
q∗t+1

)

Review Recognition Segmentation Training Summary

Example

An example of HMM, GFDL by Reelsun, 2012,

https://commons.wikimedia.org/wiki/File:An_example_of_HMM.png

https://commons.wikimedia.org/wiki/File:An_example_of_HMM.png

Review Recognition Segmentation Training Summary

Example

Viterbi animated demo, GFDL by Reelsun, 2012,

https://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif

https://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif

Review Recognition Segmentation Training Summary

Numerical Problems

Viterbi algorithm has the same floating-point underflow problems
as the Forward algorithm. But this time, there is an easy solution,
because the log of the max is equal to the max of the log:

ln δt(j) = ln

(
N

max
i=1

δt−1(i)aijbj(~xt)

)
=

N
max
i=1

(ln δt−1(i) + ln aij + ln bj(~xt))

Review Recognition Segmentation Training Summary

The Log-Viterbi Algorithm

1 Initialize:
ln δ1(i) = lnπi + ln bi (~x1)

2 Iterate:

ln δt(j) =
N

max
i=1

(ln δt−1(i) + ln aij + ln bj(~xt))

ψt(j) =
N

argmax
i=1

(ln δt−1(i) + ln aij + ln bj(~xt))

3 Terminate: Choose the known final state q∗T .

4 Backtrace:

q∗t = ψt+1

(
q∗t+1

)

Review Recognition Segmentation Training Summary

Outline

1 Review: Hidden Markov Models

2 Recognition: The Scaled Forward Algorithm

3 Segmentation: The Viterbi Algorithm

4 Training: The Scaled Backward Algorithm

5 Summary

Review Recognition Segmentation Training Summary

Baum-Welch Re-estimation

Unfortunately, the Viterbi algorithm doesn’t solve the problem of
training. We still need:

ξt(i , j) ≡ p(qt = i , qt+1 = j |X ,Λ)

=
αt(i)aijbj(~xt+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~xt+1)βt+1(`)

We have a numerically-safe algorithm for finding α̂t(j). Can we
use that, somehow?

Review Recognition Segmentation Training Summary

Scaled Baum-Welch Re-estimation

We already have

α̂t(i) =
αt(i)∏t
τ=1 Gτ

Suppose we also define

β̂t+1(j) =
βt+1(j)∏T
τ=(t+1) Gτ

Then we get

α̂t(i)aijbj(~xt+1)β̂t+1(j)∑N
k=1

∑N
`=1 α̂t(k)ak`b`(~xt+1)β̂t+1(`)

=

1∏T
τ=1 Gτ

αt(i)aijbj(~xt+1)βt+1(j)

1∏T
τ=1 Gτ

∑N
k=1

∑N
`=1 αt(k)ak`b`(~xt+1)βt+1(`)

= ξt(i , j)

Review Recognition Segmentation Training Summary

The Scaled Backward Algorithm

1 Initialize:
β̂T (i) = 1, 1 ≤ i ≤ N

2 Iterate:

β̂t(i) =
1

Gt

N∑
j=1

aijbj(~xt+1)β̂t+1(j)

The scaling constant, Gt , can be the same for forward algorithm,
but doesn’t have to be. I get better results using other normalizing
constants, for example,

∑
i β̂t(i) = 1 for t < T .

Review Recognition Segmentation Training Summary

Outline

1 Review: Hidden Markov Models

2 Recognition: The Scaled Forward Algorithm

3 Segmentation: The Viterbi Algorithm

4 Training: The Scaled Backward Algorithm

5 Summary

Review Recognition Segmentation Training Summary

The Scaled Forward Algorithm

1 Initialize:

α̂1(i) =
1

G1
πibi (~x1)

2 Iterate:

α̂t(j) =
1

Gt

N∑
i=1

α̂t−1(i)aijbj(~xt)

3 Terminate:

ln p(X |Λ) =
T∑
t=1

lnGt

Review Recognition Segmentation Training Summary

The Log-Viterbi Algorithm

1 Initialize:
ln δ1(i) = lnπi + ln bi (~x1)

2 Iterate:

ln δt(j) =
N

max
i=1

(ln δt−1(i) + ln aij + ln bj(~xt))

ψt(j) =
N

argmax
i=1

(ln δt−1(i) + ln aij + ln bj(~xt))

3 Terminate: Choose the known final state q∗T .

4 Backtrace:

q∗t = ψt+1

(
q∗t+1

)

Review Recognition Segmentation Training Summary

Scaled Baum-Welch Re-estimation

ξt(i , j) ≡ p(qt = i , qt+1 = j |X ,Λ)

=
α̂t(i)aijbj(~xt+1)β̂t+1(j)∑N

k=1

∑N
`=1 α̂t(k)ak`b`(~xt+1)β̂t+1(`)

	Review: Hidden Markov Models
	Recognition: The Scaled Forward Algorithm
	Segmentation: The Viterbi Algorithm
	Training: The Scaled Backward Algorithm
	Summary

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

