Lecture 14: Log Viterbi and Scaled
Forward-Backward

Mark Hasegawa-Johnson
All content CC-SA 4.0 unless otherwise specified.

ECE 417: Multimedia Signal Processing, Fall 2020

https://creativecommons.org/licenses/by-sa/4.0/

© Review: Hidden Markov Models
© Recognition: The Scaled Forward Algorithm
© Segmentation: The Viterbi Algorithm

@ Training: The Scaled Backward Algorithm

e Summary

Review

Outline

@ Review: Hidden Markov Models

The Three Problems for an HMM

© Recognition: Given two different HMMs, A; and Ay, and an
observation sequence X. Which HMM was more likely to have
produced X7 In other words, p(X|A1) > p(X|A2)?

@ Segmentation: What is p(Q|X,A\)?

© Training: Given an initial HMM A, and an observation
sequence X, can we find A" such that p(X|\') > p(X|A)?

Recognition

Outline

© Recognition: The Scaled Forward Algorithm

Recognition
©000000000

The Forward Algorithm

Definition: at(i) = p(Xi, ..., X, g = i|\). Computation:

@ Initialize:

Q lterate:

Recognition
0®00000000

Numerical Issues

The forward algorithm is susceptible to massive floating-point
underflow problems. Consider this equation:

N N
= Z Z Tq gy (X1) - - ag:_1q: bq. (%)
q1=1 qr—1=1

First, suppose that bg(x) is discrete, with k € {1,...,K}.
Suppose K ~ 1000 and T ~ 100, in that case, each a.(j) is:

@ The sum of N7 different terms, each of which is

@ the product of T factors, each of which is

o the product of two probabilities: a; ~ & times bj(x) ~ %, so

.
(J) ~ NT i ~ i ~ 10—300
AT = NK) TKTT

Recognition
00®0000000

Numerical Issues

Softmax observation probabilities are scaled similarly to discrete

pmfs (b;(X) ~ 1000) but Gaussians are much worse. Suppose that
bj(X) is Gaussian:

(xd— 1))
. 1 3 g X
bj(X) = —e Jd

Suppose that D = 30.
@ On average, E [(Xd;éw)z] =1,

Jjd

@ so on average, bj(X) = ﬁe‘l‘r’ =3x10719.

Recognition
000®000000

How to Solve Numerical Issues

@ Single-precision floating point can represent numbers as small
as 27127,

@ One time step of the forward algorithm can be computed with
no problem, but 100 time steps is impossible.

@ Solution: re-normalize a(j) to &:(j) after each time step, so
that }_; 4:(j) = 1.

Recognition
0000®00000

The Scaled Forward Algorithm

@ Initialize: ~
A 7T,'b,'(X1)
()= — oy

> o1 Tebe(X1)
Q lterate:

_ Xt dea(agh(R)
Zév:l Z,N:1 Gr-1(i)aiebe(Xr)

a:(J)

© Terminate:
p(X|N\) =7777

Recognition
00000®0000

What exactly is alpha-hat?

Let's look at this in more detail. a:(j) is defined to be
p(Xi,...,Xt, gt = jIN). Let's define a “scaling term,” G, equal to
the denominator in the scaled forward algorithm. So, for example,
at time t = 1 we have:

N N
G =Y a1(t) =) p(x,q1 = IA) = p(x1|A)

=1 (=1
and therefore

i) _ pFq = iIA)

AlEy _ — il A
al(l) Gy p()?l‘A) P(ql I’X1>)

Recognition
000000e000

What exactly is alpha-hat?

At time t, we need a new intermediate variable. Let's call it a:()):

N
() = Y Qea(i)agbi(%)
i—1

=> p(qe-1=i%,...,%1,Np(qe = jlqe—1 = i)p(%|qr = j)
= P(CIt :jv)_(‘t|)_<'17 s a)?tflv /\)

Zat —PXt|X1> . a)?tflal\)

e X =¥, .., X1, A
&t(-l):at(f) _p(Xtaqt J|X17 y Xt—1,)

= e 5 =plg: = j|X1, ..., X, A\
Gt P(Xt|X17---aXt—1,A) (t ‘ ‘)

Recognition
0000000800

Scaled Forward Algorithm: The Variables

So we have not just one, but two new variables:
@ The scaled forward probability:

~

at(j) = P(Qt :.j|)?17 ce. 7zt7A)
@ The scaling factor:

Gt = P(£t|£17 s ,)?tflal\)

Recognition
0000000080

The Solution

The second of those variables is interesting because we want
p(X|A), which we can now get from the G;s—we no longer
actually need the as for this!

P(X|N) = p(xa|N)p(x2|x1, N)p(Xs|x1, X2, A H G

But that's still not useful, because if each G; ~ 10719, then
multiplying them all together will result in floating point underflow.
So instead, it is better to compute

.
Inp(X|A)=> InG,

Recognition
000000000e

The Scaled Forward Algorithm

@ Initialize:

Q lterate:

N
Z i)aijbj(X)

© Terminate:

In p(X|A) = ZmGt

Segmentation

Outline

© Segmentation: The Viterbi Algorithm

Segmentation
®0000000000

What About State Sequences?

@ Remember when we first derived 7;(i), | pointed out a
problem: ~:(i) only tells us about one frame at a time! It
doesn’t tell us anything about the probability of a sequence of
states, covering a sequence of frames.

@ Today, let's find a complete solution. Let’s find the most
likely state sequence covering the entire utterance:

Q" = argmax p(Q, X|A)
Q

Segmentation
0®000000000

The Max-Probability State Sequence

The problem of finding the max-probability state sequence is just
as hard as the problem of finding p(X|A), for exactly the same
reason:

max p(Q, X|A\) = max - - ml\zf\xp(Q,X|/\)
Q qr=1 q=1

which has complexity O {NT}.

Segmentation
00®00000000

The Viterbi Algorithm

Remember that we solved the recognition probability using a
divide-and-conquer kind of dynamic programming algorithm, with
the intermediate variable

Oét(j) = p()?lv' .. a)?hqt :J‘A)

:Z~~-Zp()?'1,...,>?t,q1,..-,qt—17Qt:J.’/\)

qr—1 aq1

The segmentation problem is solved using a similar dynamic
programming algorithm called the Viterbi algorithm, with a slightly
different intermediate variable:

5t(_/) = Tai(o mq?XP()?la s 7)_(}7 ai,..-,4t-1,qt :./|A)

Segmentation
000®0000000

The Viterbi Algorithm

Keeping in mind the definition
0t(j) = maxg, , ---maxq, p(X1,..., %, q1, ..., Ge—1, ¢ = j|\), we
can devise an efficient algorithm to compute it:

Q Initialize:

01(7) = mibi(%1)
@ lterate:
N -
0:(j) = malx5t 1(1)ajbj (%)

© Terminate: The maximum-probability final state is
a5 = argmax 1 07(j). But what are the best states at all of
the previous t|me steps?

Segmentation
0000®000000

Backtracing

We can find the optimum states at all times, g, by keeping a
backpointer ;(j) from every time step. The backpointer points
to the state at time t — 1 that is most likely to have preceded state
j at time t:

¢t(.l) = argmax-- 'mq?xp()?la'” 7)?taq1)' o qi—1 = ia qt :J|/\)
1

N . —
= argmax d;—1(/)ajibj(Xt)
i=1

Segmentation
00000e00000

Backtracing

If we have the backpointers available, then we can get the entire
maximum-probability state sequence by backtracing after we
terminate:
@ Terminate: Once we get to time t = T, we choose the most
probable final state.
o If we already know which state we want to end in, then we just
choose that state as g7.
o If we don't already know, then we choose g7 = argmax; d7(j)
e Backtrace: Having found the final state, we work backward,
by way of the backpointers, 1;(j):

G = Ye41(Giy1), T—-12t>1

Segmentation
000000e0000

The Viterbi Algorithm

Q Initialize:
(51(1') = 7T,'b,'()?1)
Q lterate:
. N . S
6:(J) = max 0r-1(7)ajjbj(%t)
. N . =
ve(j) = argrr;ax de—1(i)ajjbj(Xt)

© Terminate:

N ,
g7 = argmaxd7(j)
=1

© Backtrace:

qZ‘ =Pt (qi‘+1)

Segmentation
00000008000

Example

06 04
0.7 06
04

017 g4 ™ o5

0.3 01

oy l

https://commons.wikimedia.org/wiki/File:An_example_of _HMM.png

An example of HMM, GFDL by Reelsun, 2012,

https://commons.wikimedia.org/wiki/File:An_example_of_HMM.png

Segmentation
00000000e00

Example

Day 1
Obspreation
nanma

Caloulata
P _staniistate) - P_obs{™normal®)

Viterbi animated demo, GFDL by Reelsun, 2012,

https://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif

https://commons.wikimedia.org/wiki/File:Viterbi_animated_demo.gif

Segmentation
00000000080

Numerical Problems

Viterbi algorithm has the same floating-point underflow problems
as the Forward algorithm. But this time, there is an easy solution,
because the log of the max is equal to the max of the log:

In6:(j) = In <rp'_va1xét1(i)a;jbj(>?t)>

- m’%{((ln&,l(i) +1n 2 + In b(%,))

=

Segmentation
0000000000e

The Log-Viterbi Algorithm

@ Initialize:
In 51([) =1In i+ In b,'()?l)

Q lterate:
In 6:(j) = mﬁ%(ln&t,l(i) +1Inay + Inbj(%))

e(j) = argmax (In e_1(i) + In a5 + In b;(%))
i=1

© Terminate: Choose the known final state g7
© Backtrace:

q: = Y41 (ql‘+1)

Training

Outline

Training: The Scaled Backward Algorithm
g

Training
®00

Baum-Welch Re-estimation

Unfortunately, the Viterbi algorithm doesn't solve the problem of
training. We still need:

&(i,J) = p(qe = i, qer1 = I X, A)

_ a¢(i)aijbj(Xe1)Ber1())
Soh1 Sty (k) akebe(Res1) Besa (€)

We have a numerically-safe algorithm for finding &:(j). Can we
use that, somehow?

Training
oceo

Scaled Baum-Welch Re-estimation

@ We already have

(i) = ?t(l)
HT:I GT
@ Suppose we also define
/Bt-i-l(_]) /Bt-i-l()
HT—(H-l) G

@ Then we get

&¢(i)ayjbj(Res1) Ber1())
S k1 St Ge(k)akebe(Re41)Bera(£)
ﬁa (aijbj(Xex1)Ber1())

HTT— Zk 1ZZ 1 e(k)akebe(Xet1)Be+1(€)
- gt(’a./)

Training
ocoe

The Scaled Backward Algorithm

@ Initialize:
Q lterate:
R 1 U A
Be(i) = < Z ajibj(Xe+1)Be+10))
j=1

The scaling constant, G;, can be the same for forward algorithm,
but doesn’t have to be. | get better results using other normalizing
constants, for example, > . B¢(i) =1for t < T.

Summary

Outline

© Summary

Summary
®00

The Scaled Forward Algorithm

@ Initialize:

Q lterate:

N
Z i)aijbj(X)

© Terminate:

In p(X|A) = ZmGt

Summary
oeo

The Log-Viterbi Algorithm

@ Initialize:
In 51([) =1In i+ In b,'()?l)

Q lterate:
In 6:(j) = mﬁ%(ln&t,l(i) +1Inay + Inbj(%))

e(j) = argmax (In e_1(i) + In a5 + In b;(%))
i=1

© Terminate: Choose the known final state g7
© Backtrace:

q: = Y41 (ql‘+1)

Summary
ooe

Scaled Baum-Welch Re-estimation

ét(lv./) = P(CIt - i7 qt+1 :./’X7A)
_ &t(i)al]’bj()?t+l)ﬁ/\t+l(j)/\
Soh1 S0ty Ge(k)akebe(Res1)Bera (€)

	Review: Hidden Markov Models
	Recognition: The Scaled Forward Algorithm
	Segmentation: The Viterbi Algorithm
	Training: The Scaled Backward Algorithm
	Summary

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

