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Hidden Markov Model

@ Start in state g; = i with pmf ;.

@ Generate an observation, X, with pdf b;(x).

© Transition to a new state, ;41 = j, according to pmf aj;.
© Repeat.
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The Forward Algorithm

Definition: at(i) = p(Xi, ..., X, g = i|\). Computation:

@ Initialize:

Q lterate:
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The Backward Algorithm

Definition: S:(i) = p(Xt+1, - .., XT|gt = i,\). Computation:
@ Initialize:
Br(i)=1, 1<i<N

Q lterate:
() = ajbi(%41)Bera(), 1<i<N, 1<t<T-1
j=1
© Terminate:

p(X|A) = ZTF, x1)B1(1)
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The Baum-Welch Algorithm

@ Initial State Probabilities:

ot 2sequences 71(1)
# sequences

@ Transition Probabilities:

I ZZ—:_ll gt(iJ)

VSN S I)

© Observation Probabilities:

—%ZZ% In b;j(X:)

t=1 =1
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@ Softmax Observation Probabilities
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Review: Conditional Probability

The relationship among posterior, prior, evidence and likelihood is

-

P(q|X)p(x) = p(x|q)p(q)

Since softmax is normalized so that 1 = }_  softmax(e[q]), it
makes most sense to interpret softmax(e[q]) = p(q|X). Therefore,
the likelihood should be

p(X) softmax(e[q])
p(q)

be(X) = p(Xlq) =
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Relationship between the likelihood and the posterior

Therefore, the likelihood should be

p(X) softmax(e[q])
p(q)

be(X) = p(Xlq) =

However,
o If we choose training data with equal numbers of each phone,
then we can assume p(q) = 1/N.
@ p(X) is independent of g, so it doesn't affect recognition. So
let's assume that p(x) = 1/N also.
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Softmax Observation Probabilities

Given the assumptions that p(q) = p(X) = 1/N,

bq(X) = p(X|q) = p(q|X) = softmax(e[q])

The assumptions are unrealistic. We sometimes need to adjust for
low-frequency phones, in order to get good-quality recognition.
But let's first derive the solution given these assumptions, and then
we'll see if the assumptions can be relaxed.
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Softmax Observation Probabilities

Given the assumptions that p(q) = p(x) = 1/N,

exp(e[q])
>y exp(eld])’

where ¢[i] is the i element of the output excitation row vector,
€ = hW, computed as the product of a weight matrix W with the
hidden layer activation row vector, h.

bg(X) = softmax(e[q]) =
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Expected negative log likelihood

The neural net is trained to minimize the expected negative log
likelihood, a.k.a. the cross-entropy between ~:(i) and b;(X;):

T N
LcE=——= ZZ ) In b (%)
t=1 j=1

Remember that, since &= hW, the weight gradient is just:

dECE dﬁCE aet[k] dECE .
h
dwy Z de[k] Owy Z de[K] tl]

where h[j] is the j* component of h at time t, and e;[k] is the
k*" component of € at time t.



Softmax
00000e000000

Back-prop

Let's find the loss gradient w.r.t. e:[k]. The loss is

LcE= —%ZZ% In b;(X;)

t=1 i=1

so its gradient is

dlce N (i) Obi(%e)
det[/f] Z t) Oex[K]



Softmax
000000e00000

Differentiating the softmax

The softmax is (e[ A
o eplell) A
= T el ~ B

Its derivative is

ob(x) 1 9A A 0B
Oe[k] ~ BOelk] B2 0elk]
exp(e[l]) _ _ exp(e[i])?
>_cexp(eld]) (Zeexp(e[ﬁ]))2
_exp(e[i])exp(e[k2]) I;é k
(> exp(elf]))
b0 - ) =k
BRI CENEY

| =
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Summary: softmax observation probabilities

Training W to minimize the cross-entropy between ~;(i) and b;(t),

1 T N
ECE:_?ZZ )|nb(xt
t=1 =1

yields the following weight gradient:

dLce
dwij

1 T
=== > helil (ve(k) = bi(%0))
t=1

which vanishes when the neural net estimates by (X;) — ~v:(k) as
well as it can.
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Summary: softmax observation probabilities

The Baum-Welch algorithm alternates between two types of
estimation, often called the E-step (expectation) and the M-step
(maximization or minimization):
© E-step: Use forward-backward algorithm to re-estimate
Ve(i) = p(ge = i|X, N).
@ M-step: Train the neural net for a few iterations of gradient
descent, so that by(X:) — ve(k).
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Final note: Those ridiculous assumptions

As a final note, let’s see if we can eliminate those ridiculous
assumptions, p(q) = p(X) = 1/N. How? Well, the weight
gradient goes to zero when Y1 h:[j] (7:(k) — bk(X:)) = 0. There
are at least two ways in which this can happen:

Q bk(X:) = v¢(k). The neural net is successfully estimating the
posterior. This is the best possible solution if
plg=i)=p(X) = 4.

@ bk(X:) — v¢(k) is uncorrelated with h:[j], e.g., because it is
zero mean and independent of X;.
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Final note: Those ridiculous assumptions

The weight gradient goes to zero if (k) — bx(X;) is zero mean
and independent of X;. For example,

@ by (X) might differ from ~;(k) by a global scale factor. Instead
of softmax, we might use some other normalization, either
because (a) it's scaled more like a likelihood, or (b) it has nice
numerical properties. An example of (b) is:

o exp(el])
bl( ) max; eXP(eU])

@ by(X) might differ from ~;(k) by a phone-dependent scale
factor, e.g., we might choose

pla=1i)  p(qg=1i)Y L, exp(eli])

bi(z) = PLA=1%) _ exp(e[/])
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© Gaussian Observation Probabilities
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Baum-Welch with Gaussian Probabilities

Baum-Welch asks us to minimize the cross-entropy between (/)
and b;(X;):

ﬁCE——*ZZ’Yt Inb Xt
t=1 j=1

In order to force b;(X;) to be a likelihood, rather than a posterior,
one way is to use a function that is guaranteed to be a properly
normalized pdf. For example, a Gaussian:

b,()?) = .N’()?, ﬁi, Z,-)



Gaussians
©0®00000

Diagonal-Covariance Gaussian pdf

Let's assume the feature vector has D dimensions,

X = [x1,...,xp]. The Gaussian pdf is
1 Lo e a7
e CHE RN E )
NKLE) = Gobrsse
Let's assume a diagonal covariance matrix, ¥ = diag(o?,...,0%),
so that
2
1 1 D: (xg—Hg)
N(E,5) = e

[~D
[To—1 27”73
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Logarithm of a diagonal covariance Gaussian

The logarithm of a diagonal-covariance Gaussian is

D
Xd—ud
In b;(X EZ Zlno’d —In (2m)
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Minimizing the cross-entropy

Surprise! The cross-entropy between (i) and b;(x;) can be
minimized in closed form, if b;(x) is Gaussian.

1

T (i) In bi(X¢)

D (Xed — g2 D
Ye(i) (Z M il 43 Ino% + D |n(27r)>

(ol
d=1 id d=1

LcE=—
1

o
Il

]~
1M

1
- 2T

]~
™=

t=1 i=1

It's possible to choose s and a,-zd so that

dCce  dLce

= =0
d,uqd dO'gd
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Minimizing the cross-entropy: optimum

First, let's optimize p;y. We want

0= g 23 (3 e

t=1 i=1

Re-arranging terms, we get

S (@)
S 7(q)

Hqgd =
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Minimizing the cross-entropy: optimum o

Second, let's optimize O'I-Zd. We want
d v 2 (xed — pid)® | <o
. td — Hi 2
0= o T3 a0 (3 0 1 3 )
qd t=1 j=1 d=1 id d=1

Re-arranging terms, we get

2 _ S 7e(9) (xed — 1qa)?
ad Z;r:1 7:(q)

(o)
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Summary: Gaussian observation probabilities

A Gaussian pdf can be optimized in closed form.

@ The mean is the weighted average of feature vectors:
Sl ve(i)xe
Hid = ——7

>t Ve(h)
@ The variance is the weighted average of squared feature

vectors: T
2, 2= (1) (xeg — pia)?
id — T .
2 e=17¢(7)

...and then we would re-compute (/) using forward-backward,
and so on.
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@ Discrete Observation Probabilities
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Baum-Welch with Discrete Probabilities

Finally, suppose that x; is discrete, for example, x; € {1,...,K}.
In this case, a pretty reasonable way to model the observations is
using a lookup table:
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Optimizing a discrete observation pmf

Again, Baum-Welch asks us to minimize the cross-entropy between
(i) and bi(x¢):
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The Lagrangian

We can find the values bj(k) that minimize Lcg subject to the
constraint using a method called Lagrangian optimization.
Basically, we create a Lagrangian, which is defined to be the
original criterion plus A times the constraint:

ZZ% In bi(xe +/\<1—Zb )

t=1 =1

The idea is that there are an infinite number of solutions that will

set #fk) = 0; we will choose the one that also sets ), bi(k) = 1.
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Differentiating The Lagrangian

Differentiating the Lagrangian gives

dl _ Y:(q)
(k) ~ 2= by(k)

Setting ﬁ = 0 gives

bo(k) =1 3 %(a)

t:xr=k

Then we choose A so that ) bg(k) = 1.
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Summary: Estimating the Observation Probability

DEES

The Baum-Welch algorithm alternates between two steps,
sometimes called the E-step (expectation) and the M-step
(maximization or minimization):
@ E-step: Use forward-backward algorithm to re-estimate the
posterior probability of the hidden state variable,
v¢(1) = p(qe = i|X, \), given the current model parameters.

@ M-step: re-estimate the model parameters, in order to
minimize the cross-entropy between (i) and b;j(x¢):

1 T N
Loe=—= DD i) Inbixe).

t=1 j=1
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Three Types of Observation Probabilities

@ Minimizing Lcg for a softmax gives

dLce
dwiy

1 T
=== helil (e(K) — bi(%))
t=1

@ Minimizing Lcg for a Gaussian gives

Zthl Ye(f)
02, = S b (1) (Xed — pia)?
| iy (i)

@ Minimizing Lcg for a discrete pmf gives

_ Zt:xt:k 'Vt(i)
Yy ()

Hid

bi(k)
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