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@ Review: Bayesian Probabilities and Neural Networks



Review: Bayesian probabilities and Neural nets

Here's how we can estimate the four Bayesian probabilities using a

neural net:
© Prior:
( ) # times g = i occurred in training data
=)= . —
Pa # frames in training data
@ Posterior:

p(q = i|xX) = softmax (e[i])



Review: Bayesian probabilities and Neural nets

Here's how we can estimate the four Bayesian probabilities using a
neural net:

© Evidence:
p(%) = G 3 exp(el])

for some unknown value of G.

@ Likelihood:
o Gelel)
p(X’q— )_ p(q: I)

We have to be a little careful in our derivations, but usually we can
just choose some value of G with good numerical properties, like
G = 1/ max; exp(e[j]) for example.
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@ Hidden Markov Models
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Notation: Inputs and Outputs

@ Let's assume we have T consecutive observations,
X =[%,...,X7].

@ A “hidden Markov model” represents those probabilities by
assuming some sort of “hidden” state sequence,
Q =[q1,...,q7], where g; is the hidden (unknown) state
variable at time t.

The idea is, can we model these probabilities well enough to solve
problems like:

© Recognition: What's p(X) given the model?

@ Segmentation: What state is the model in at time t?

© Training: Can we learn a model to fit some data?
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HMM: Key Concepts

An HMM is a “generative model,” meaning that it models the
joint probability p(Q, X) using a model of the way in which those
data might have been generated. An HMM pretends the following
generative process:

© Start in state g = i with pmf ; = p(gq1 = /).

@ Generate an observation, x, with pdf b;(X) = p(X|q: = i).

© Transition to a new state, g;11 = Jj, according to pmf

ajj = p(qe41 = Jjlge = ).
Q@ Repeat.



HMM
00®00

HMM: Finite State Diagram

© Start in state g; = i, for some 1 </ < N.

@ Generate an observation, X, with pdf b;(x).

© Transition to a new state, ;41 = j, according to pmf aj;.
© Repeat steps #2 and #3, T times each.
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Notation: Model Parameters

Solving an HMM s possible if you carefully keep track of
notation. Here's standard notation for the parameters:

e 7; = p(q1 = i) is called the initial state probability. Let N
be the number of different states, so that 1 < i < N.

e aj = p(q: = j|qe—1 = i) is called the transition probability,
1<ij<N.

e bj(X) = p(X: = X|q: = j) is called the observation
probability. It is usually estimated by a neural network,
though simpler models (e.g., Gaussians, lookup tables) are
possible.

@ A is the complete set of model parameters, including all the
m;i's and aj;'s, and the neural net parameters necessary to
compute bj(X).
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The Three Problems for an HMM

@ Recognition: Given two different HMMs, Ay and A, and an

observation sequence X. Which HMM was more likely to have
produced X? In other words, p(X|A1) > p(X|A2)?

@ Segmentation: What is p(q: = i|X,\)?

© Training: Given an initial HMM A, and an observation
sequence X, can we find A" such that p(X|A\) > p(X|A)?



Recognition

Outline

© Recognition: the Forward Algorithm
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The HMM Recognition Problem

e Given
o X = [)?1,...,)?7’] and
o A= {m,ay, bj(X)Vi,j},
what is p(X|A)?
@ Let's solve a simpler problem first:
@ Given
o X =[x,...,x7] and
o Q=1q1,...,q7] and
o A= {7‘1’,‘7 ajj, bj()?)Vl',j},
what is p(X|A)?
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Joint Probability of State Sequence and Observation

Sequence

The joint probability of the state sequence and the observation
sequence is calculated iteratively, from beginning to end:

@ The probability that g1 = g1 is 7g,.

@ Given gy, the probability of X is bg, (X1).
@ Given g1, the probability of go is ag,q,-
@ ...and soon...

T
p(Q, X|\) = mq, bg, (%1) H ag:_1q: bq. (%)
t=2
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Probability of the Observation Sequence

The probability of the observation sequence, alone, is somewhat
harder, because we have to solve this sum:

p(X|A) = Zp (Q,X|A)

SIS CEUS

qr=1 qi=1

On the face of it, this calculation seems to have complexity
@) {NT}. So for a very small 100-frame utterance, with only 10
states, we have a complexity of O {10'%°} =one google.
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The Forward Algorithm

The solution is to use a kind of dynamic programming algorithm,
called “the forward algorithm.” The forward probability is defined
as follows:

ar(i) = p(X, ... X, ge = i|N)
Obviously, if we can find a¢(i) for all i and all ¢, we will have

solved the recognition problem, because
p(X|N) = ., XT|N)

p()?la"' 7;T7QT = ’|/\)

I
.MZ ’>‘<]

Il
—_

7(i)

I
.sz

Il
—
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The Forward Algorithm

So, working with the definition a(i) = p(Xi, ..., X¢, g = i|\),
let's see how we can actually calculate a(7).

Q Initialize:

a1(i) = p(qr = i, x1|N)
= p(q1 = iIN)p(silar = i, A)
= 7T,'b,'()?1)



Recognition
00000e00

The Forward Algorithm

Definition: a(i) = p(X1, ..., X, g = i|N).
@ Initialize:
ar(i) =mibi(x1), 1<i<N
Q lterate:

Ckt‘(.j) = p()?lu L 7)?t7qt :J‘A)

N
= ZP(YL oy X1, Ge—1 = 1)p(qe = jlqe—1 = 1)p(Xelqr = J)

N
= Zat—1(")3ijbj(’?f)
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The Forward Algorithm

So, working with the definition a(i) = p(Xi, ..., X¢, g = i|\),
let's see how we can actually calculate a(7).

@ Initialize:

Q lterate:
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The Forward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

o lterate:
N
ai() =D ara(iagbi(%), 1<ij<N,2<t<T
i=1

Its complexity is:
@ Foreachof T — 1 timesteps, 2<t<T,...
@ we need to calculate N different alpha-variables, a.(j), for
1<j<N,. ..
@ each of which requires a summation with N terms.

So the total complexity is O { TN?}. For example, with N = 10
and T =100, the complexity is only 10,000 multiplies.
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@ Segmentation: the Backward Algorithm



Segmentation
©000000000

The Segmentation Problem

There are different ways to define the segmentation problem. Let's
define it this way:
@ We want to find the most likely state, g; = i, at time t,. ..
@ given knowledge of the entire sequence X = [Xi, ..., XT], not
just the current observation. So for example, we don't want
to recognize state i at time t if the surrounding observations,

X;_1 and X;y1, make it obvious that this choice is impossible.
Also,. ..

@ given knowledge of the HMM that produced this sequence, A.

In other words, we want to find the state posterior probability,
p(g: = i|X, ). Let's define some more notation for the state
posterior probability, let's call it

Y:(i) = p(qe = i|X, )
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Use Bayes' Rule

Suppose we already knew the joint probability, p(X, g: = i|\).
Then we could find the state posterior using Bayes' rule:

p(X, g: = i\)

(1) = p(g: = i|X,\) =
Ye(i) = p(q | ) Zj’\’:lp(X,Qt:jV\)
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Use the Forward Algorithm

Let's expand this:

p(X,q: = ilA) = p(q: = i, x1,...,XT|A)

We already know about half of that:
ai(i) = p(ge = i,X1,...,X|\). We're only missing this part:

p(X7 qt = l’/\) = Oét(")P(?Hl, s 7)_(7—|q1.' = 17/\)

Again, let's try the trick of “solve the problem by inventing new
notation.” Let's define

5t(i) = P(ft+1,---a>?T|CIt =1, /\)
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The Backward Algorithm

Now let's use the definition 5:(i) = p(Xet1, ..., X7|q: = i,\), and
see how we can compute that.
Q Initialize:
Br(i)=1, 1<i<N

This might not seem immediately obvious, but think about it.
Given that there are no more X vectors after time T, what is
the probability that there are no more X vectors after time T7?
Well, 1, obviously.
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The Backward Algorithm

Now let's use the definition 5:(i) = p(Xe+1, - ., X7|9: = i, \), and
see how we can compute that.

@ Initialize:

Q lterate:

Be(i)

p(zt+l7 s 7)?T‘qt = i7 /\)

N
ZP(QtH = jlqe = i)p(Xe41lqe+1 = J)P(Kes2, - - -, XT[qe41 = j)
j=1

-
Il

I
.MZ

ajjbj(Xe11)Bev1())

.
Il
—
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The Backward Algorithm

Now let's use the definition 5:(i) = p(Xe+1, - - ., X7|9: = i, \), and
see how we can compute that.

@ Initialize:
Q lterate:

N
)= agbi(Res1)Bera(f), 1<i<N, 1<t<T-1
j=1

© Terminate:

X’/\ Zﬂ, X1 61(
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The Backward Algorithm: Computational Complexity

Most of the computational complexity is in this step:
o lterate:

N
Be(i) = Zaﬁbj()?t+l)6t+1(j)7 1<i<N, 2<t<T
j=1
Its complexity is:
@ Foreachof T — 1 timesteps, 1<t<T—1,...

@ we need to calculate N different beta-variables, 3¢(i), for
1<i<N,...

@ each of which requires a summation with N terms.
So the total complexity is O { TN?}.
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Use Bayes' Rule

The segmentation probability is then

N P(X,qe=iN)
’Yf(l) - N
Zk:l ,D(X, qt = k‘/\)
(R R Ge = i[NP(Rera, - XTI G = i) )
ZQI:I p()?la s Xy Gy = k‘A)P()?t+1, . a)_(T‘qt = k7/\)
_ar(D)Be(i)
- N
Zk:l a¢(k)Be(k)
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What About State Sequences?

o Notice a problem: (i) only tells us about one frame at a
time! It doesn't tell us anything about the probability of a
sequence of states, covering a sequence of frames!

@ ...but we can extend the same reasoning to cover two or
more consecutive frames. For example, let's define:

§e(i5)) = p(qe = 1, qer1 = JIX,N)

@ We can solve for &:(i,j) using the same reasoning that we
used for ~y¢(i)!
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Segmentation: The Backward Algorithm

In summary, we now have three new probabilities, all of which can
be computed in O { TN?} time:

© The Backward Probability:

Bt(l) = p()_(t-‘rlv s 7)_(’T’qt = I7A)
@ The State Posterior:

(i) Be (i)

() = p(qe = i|X,N\) =
Y:(7) = p(qe = i|X,A) S e (K)Be(K)

© The Segment Posterior:

&(i,)) = p(ge =1, qe+1 = JjI X, N\)
_ at(i)ajjbj(%e+1) Be+1())
Skt Yo ae(k)akeby(%e41)Beta (6)
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© Training: the Baum-Welch Algorithm
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Maximum Likelihood Training

Suppose we're given several observation sequences of the form

X = [X,...,X7]. Suppose, also, that we have some initial guess
about the values of the model parameters (our initial guess doesn’t
have to be very good). Maximum likelihood training means we

want to compute a new set of parameters, ' = {Wf, aj, bj’()?)}
that maximize p(X|N').
@ Initial State Probabilities: Find values of 7}, 1 < i < N,
that maximize p(X|N\).
@ Transition Probabilities: Find values of af-j, 1<i,j<N,
that maximize p(X|N).
© Observation Probabilities: Find values of the neural network
parameters such that b(X) maximizes p(X|\').
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Maximum Likelihood Training with Known State Sequence

Impossible assumption: Suppose that we actually know the state

sequences, Q = [q1,- .., gT7], matching with each observation

sequence X = [Xi,...,x7]. Then the maximum likelihood

parameters (the A’ that maximizes p(X, Q|A\’) would be given by
@ Initial State Probabilities:

, 7 state sequences that start with g1 =/

mi= # state sequences in training data

@ Transition Probabilities:

S # frames in which g:—1 =1i,q: =
Y # frames in which g;_1 =i

© Observation Probabilities: Re-estimate the neural network
in order to maximize the log likelihood of the actual state
sequence, i.e., minimize the following loss function:

;
L== Inbg (%)
t=1
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Expectation Maximization

When the true state sequence is unknown, then we can't maximize
the likelihood p(X, Q|A\") directly. Instead, we maximize the

expected log likelihood, Eq [In p(X, Q|A')], where the expectation
is over the unknown (hidden) state sequence.

@ Initial State Probabilities:

r_ E [# state sequences that start with g; = i]
! # state sequences in training data

@ Transition Probabilities:

) E [# frames in which q:—1 =i, g: = J]
" E[# frames in which ;1 = i]

© Observation Probabilities:

i
£==3 Ellnby (%)
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Calculating the Expectations

Now let's talk about how to calculate those expectations.
o In the t'" frame, the event q; = i, gs4+1 = j either happens, or
it doesn't happen.
@ So the following expectation is actually just a probability:

E [# times during the t*™® frame, in which q; = i, ge41 :j]
= p(qt = i, Gt+1 = j)

e Now we need to ask, in order to compute p(q: = i, gt+1 = j),
what other information do we get to use? The answer is: the
more information you can use, the better your answer will be.
So if we already have a previous estimate of A, and we know
X, then let's use them:

E [# times, during just one frame, in which g; = i, g¢1+1 = J]
= p(qr =i, qe41 = jIX, N)
= gt(la./)
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The Baum-Welch Algorithm

@ Initial State Probabilities:

L E [# state sequences that start with g; = i]
! # state sequences in training data

_ Zsequences f)/l(l)
7 sequences
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The Baum-Welch Algorithm

@ Initial State Probabilities:

/ — Zsequences ’yl(l)
# sequences

@ Transition Probabilities:
4 E [# frames in which g:—1 = i, g+ = J]
v E [# frames in which g;—1 = i]
>y &elid)
St i &)
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The Baum-Welch Algorithm

@ Initial State Probabilities:

/ — Zsequences /yl(l)
# sequences

@ Transition Probabilities:
T— ..
a/“ _ thll §t(’>./)

D D Sl A ()

© Observation Probabilities:

-

== Z E [In by, (%:)]
T
ZZV i) In bi(%:)

t=1 i=1




Training
0000000Oe

The Baum-Welch Algorithm

@ Initial State Probabilities:

ot 2usequences 71(1)
# sequences

@ Transition Probabilities:

I ZZ—:_ll gt(iJ)

VSN S

© Observation Probabilities:

ZZ% ) In bi(X)

t=1 i=1
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@ Numerical Example
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Example: Gumball Machines

“Gumball machines in a Diner at Dallas, Texas, in 2008,” Andreas Praefcke, public domain image.
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Example: Gumball Machines

@ Observation Probabilities: Suppose we have two gumball
machines, g = 1 and g = 2. Machine #1 contains 60%
Grapefruit gumballs, 40% Apple gumballs. Machine #2
contains 90% Apple, 10% Grapefruit.

04 x=A 09 x=A
bl(x):{06 =G’ bz(x):{m “—G

o Initial State Probabilities: My friend George flips a coin to
decide which machine to use first.

mi =05, ic{1,2}

e Transition Probabilities: After he's used a machine, George
flips two coins, and he only changes machines if both coins

come up heads.
0.75 i=j
a; =
Y {0.25 i
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A Segmentation Problem

@ George bought three gumballs, using three quarters. The
three gumballs are (x3 = A, x2 = G, x3 = A).

@ Unfortunately, George is a bit of a goofball. The second of the
three “quarters” was actually my 1867 silver “Seated Liberty”
dollar, worth $4467.

@ Which of the two machines do | need to dismantle in order to
get my coin back?

Image used with permission of the National Numismatic Collection, National Museum of American History.
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The Forward Algorithm: t =1

Remember, the observation sequence is X = (A, G, A).

al(i) = 7T;b1(f)

_J(o5)04)=02 i=1
~ 1(0.5)(0.9) =0.45 =2



The Forward Algorithm: t = 2

Remember, the observation sequence is X = (A, G, A).

B {al(l)allbl(xz) +a1(2)anbi(x) j=1

| a1(Q)aba(xe) + a1(2)anba(x) j =2
(0.2)(0.75)(0.6) + (0.45)(0.25)(0.6) = 0.04125 j = 1
{( 0.2)(0.25)(0.1) + (0.45)(0.75)(0.1) = 0.03875 | = 2
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The Backward Algorithm: t = 3

The backward algorithm always starts out with S (i) = 1!

Bs(i)=1, ie€{1,2}
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The Backward Algorithm: t =2

Remember, the observation sequence is X = (A, G, A).

2
Z aljbj X3 53(]

i—1
{anbl(xs +anbh(xz) i=1

ax1b1(x3) + axobo(x3) =2

(0.75)(0.4) + (0.25)(0.9) = 0.525 j =1
{ (0.25)(0

-,

(0.75)(0.9) = 0.775 j =2
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The Solution to the Puzzle

Given the observation sequence is X = (A, G, A), the posterior
state probability is

_ aa(Ba(i)
52, ca(k)Ba(K)

0.04125)(0.525 ,
_ {(0.04125)((0.525)4-)((0.038;5)(0.775) =042 i=1

(0.03875)(0.775) B .
(0.04125)(0.525)+(0.03875)(0.775) 058 =2

Y2(i)

So | shoud dismantle gumball machine #2, hoping to find my rare
1867 silver dollar. Good luck!
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The Forward Algorithm

Definition: at(i) = p(Xi, ..., X, g = i|\). Computation:

@ Initialize:

Q lterate:
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The Backward Algorithm

Definition: B:(i) = p(Xt+1, - .., XT|g: = i,\). Computation:
@ Initialize:
Br(i)=1, 1<i<N

Q lterate:
() =Y ajbi(%41)Bera(), 1<i<N, 1<t<T-1
j=1
© Terminate:

p(X|A) = ZTF, x1)B1(1)
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The Baum-Welch Algorithm

@ Initial State Probabilities:

ot 2usequences 71(1)
# sequences

@ Transition Probabilities:

I ZZ—:_ll gt(iJ)

VSN S

© Observation Probabilities:

ZZ% ) In bi(X)

t=1 i=1
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Hidden Markov Model

a13

a3

by (x) by (X

@ Start in state g; = i with pmf ;.

@ Generate an observation, X, with pdf b;(x).

© Transition to a new state, ;41 = j, according to pmf aj;.
© Repeat.
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