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Review: Bayesian probabilities and Neural nets

Here’s how we can estimate the four Bayesian probabilities using a
neural net:

1 Prior:

p(q = i) =
# times q = i occurred in training data

# frames in training data

2 Posterior:
p(q = i |~x) = softmax (e[i ])
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Review: Bayesian probabilities and Neural nets

Here’s how we can estimate the four Bayesian probabilities using a
neural net:

1 Evidence:
p(~x) = G

∑
j

exp(e[j ])

for some unknown value of G .

2 Likelihood:

p(~x |q = i) =
G exp(e[i ])

p(q = i)

We have to be a little careful in our derivations, but usually we can
just choose some value of G with good numerical properties, like
G = 1/maxj exp(e[j ]) for example.



Review HMM Recognition Segmentation Training Example Summary

Outline

1 Review: Bayesian Probabilities and Neural Networks

2 Hidden Markov Models

3 Recognition: the Forward Algorithm

4 Segmentation: the Backward Algorithm

5 Training: the Baum-Welch Algorithm

6 Numerical Example

7 Summary



Review HMM Recognition Segmentation Training Example Summary

Notation: Inputs and Outputs

Let’s assume we have T consecutive observations,
X = [~x1, . . . , ~xT ].

A “hidden Markov model” represents those probabilities by
assuming some sort of “hidden” state sequence,
Q = [q1, . . . , qT ], where qt is the hidden (unknown) state
variable at time t.

The idea is, can we model these probabilities well enough to solve
problems like:

1 Recognition: What’s p(X ) given the model?

2 Segmentation: What state is the model in at time t?

3 Training: Can we learn a model to fit some data?
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HMM: Key Concepts

An HMM is a “generative model,” meaning that it models the
joint probability p(Q,X ) using a model of the way in which those
data might have been generated. An HMM pretends the following
generative process:

1 Start in state qt = i with pmf πi = p(q1 = i).

2 Generate an observation, ~x , with pdf bi (~x) = p(~x |qt = i).

3 Transition to a new state, qt+1 = j , according to pmf
aij = p(qt+1 = j |qt = i).

4 Repeat.
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HMM: Finite State Diagram

1 2 3

~x ~x ~x

a11
a12

a13

b1(~x)

a22

a21

a23

b2(~x)

a33

a32

a31
b3(~x)

1 Start in state qt = i , for some 1 ≤ i ≤ N.

2 Generate an observation, ~x , with pdf bi (~x).

3 Transition to a new state, qt+1 = j , according to pmf aij .

4 Repeat steps #2 and #3, T times each.



Review HMM Recognition Segmentation Training Example Summary

Notation: Model Parameters

Solving an HMM is possible if you carefully keep track of
notation. Here’s standard notation for the parameters:

πi = p(q1 = i) is called the initial state probability. Let N
be the number of different states, so that 1 ≤ i ≤ N.

aij = p(qt = j |qt−1 = i) is called the transition probability,
1 ≤ i , j ≤ N.

bj(~x) = p(~xt = ~x |qt = j) is called the observation
probability. It is usually estimated by a neural network,
though simpler models (e.g., Gaussians, lookup tables) are
possible.

Λ is the complete set of model parameters, including all the
πi ’s and aij ’s, and the neural net parameters necessary to
compute bj(~x).
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The Three Problems for an HMM

1 Recognition: Given two different HMMs, Λ1 and Λ2, and an
observation sequence X . Which HMM was more likely to have
produced X? In other words, p(X |Λ1) > p(X |Λ2)?

2 Segmentation: What is p(qt = i |X ,Λ)?

3 Training: Given an initial HMM Λ, and an observation
sequence X , can we find Λ′ such that p(X |Λ′) > p(X |Λ)?
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The HMM Recognition Problem

Given

X = [~x1, . . . , ~xT ] and
Λ = {πi , aij , bj(~x)∀i , j},

what is p(X |Λ)?

Let’s solve a simpler problem first:

Given

X = [~x1, . . . , ~xT ] and
Q = [q1, . . . , qT ] and
Λ = {πi , aij , bj(~x)∀i , j},

what is p(X |Λ)?
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Joint Probability of State Sequence and Observation
Sequence

The joint probability of the state sequence and the observation
sequence is calculated iteratively, from beginning to end:

The probability that q1 = q1 is πq1 .

Given q1, the probability of ~x1 is bq1(~x1).

Given q1, the probability of q2 is aq1q2 .

. . . and so on. . .

p(Q,X |Λ) = πq1bq1(~x1)
T∏
t=2

aqt−1qtbqt (~xt)
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Probability of the Observation Sequence

The probability of the observation sequence, alone, is somewhat
harder, because we have to solve this sum:

p(X |Λ) =
∑
Q

p(Q,X |Λ)

=
N∑

qT=1

· · ·
N∑

q1=1

p(Q,X |Λ)

On the face of it, this calculation seems to have complexity
O
{
NT
}

. So for a very small 100-frame utterance, with only 10
states, we have a complexity of O

{
10100

}
=one google.
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The Forward Algorithm

The solution is to use a kind of dynamic programming algorithm,
called “the forward algorithm.” The forward probability is defined
as follows:

αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ)

Obviously, if we can find αt(i) for all i and all t, we will have
solved the recognition problem, because

p(X |Λ) = p(~x1, . . . , ~xT |Λ)

=
N∑
i=1

p(~x1, . . . , ~xT , qT = i |Λ)

=
N∑
i=1

αT (i)
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The Forward Algorithm

So, working with the definition αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ),
let’s see how we can actually calculate αt(i).

1 Initialize:

α1(i) = p(q1 = i , ~x1|Λ)

= p(q1 = i |Λ)p(~x1|q1 = i ,Λ)

= πibi (~x1)
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The Forward Algorithm

Definition: αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ).

1 Initialize:
α1(i) = πibi (~x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) = p(~x1, . . . , ~xt , qt = j |Λ)

=
N∑
i=1

p(~x1, . . . , ~xt−1, qt−1 = i)p(qt = j |qt−1 = i)p(~xt |qt = j)

=
N∑
i=1

αt−1(i)aijbj(~xt)
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The Forward Algorithm

So, working with the definition αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ),
let’s see how we can actually calculate αt(i).

1 Initialize:
α1(i) = πibi (~x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(X |Λ) =
N∑
i=1

αT (i)
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The Forward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ i , j ≤ N, 2 ≤ t ≤ T

Its complexity is:

For each of T − 1 time steps, 2 ≤ t ≤ T ,. . .

we need to calculate N different alpha-variables, αt(j), for
1 ≤ j ≤ N,. . .

each of which requires a summation with N terms.

So the total complexity is O
{
TN2

}
. For example, with N = 10

and T = 100, the complexity is only 10,000 multiplies.
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The Segmentation Problem

There are different ways to define the segmentation problem. Let’s
define it this way:

We want to find the most likely state, qt = i , at time t,. . .

given knowledge of the entire sequence X = [~x1, . . . , ~xT ], not
just the current observation. So for example, we don’t want
to recognize state i at time t if the surrounding observations,
~xt−1 and ~xt+1, make it obvious that this choice is impossible.
Also,. . .

given knowledge of the HMM that produced this sequence, Λ.

In other words, we want to find the state posterior probability,
p(qt = i |X ,Λ). Let’s define some more notation for the state
posterior probability, let’s call it

γt(i) = p(qt = i |X ,Λ)
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Use Bayes’ Rule

Suppose we already knew the joint probability, p(X , qt = i |Λ).
Then we could find the state posterior using Bayes’ rule:

γt(i) = p(qt = i |X ,Λ) =
p(X , qt = i |Λ)∑N
j=1 p(X , qt = j |Λ)
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Use the Forward Algorithm

Let’s expand this:

p(X , qt = i |Λ) = p(qt = i , ~x1, . . . , ~xT |Λ)

We already know about half of that:
αt(i) = p(qt = i , ~x1, . . . , ~xt |Λ). We’re only missing this part:

p(X , qt = i |Λ) = αt(i)p(~xt+1, . . . , ~xT |qt = i ,Λ)

Again, let’s try the trick of “solve the problem by inventing new
notation.” Let’s define

βt(i) ≡ p(~xt+1, . . . , ~xT |qt = i ,Λ)
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The Backward Algorithm

Now let’s use the definition βt(i) ≡ p(~xt+1, . . . , ~xT |qt = i ,Λ), and
see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

This might not seem immediately obvious, but think about it.
Given that there are no more ~x vectors after time T , what is
the probability that there are no more ~x vectors after time T?
Well, 1, obviously.
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The Backward Algorithm

Now let’s use the definition βt(i) ≡ p(~xt+1, . . . , ~xT |qt = i ,Λ), and
see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) = p(~xt+1, . . . , ~xT |qt = i ,Λ)

=
N∑
j=1

p(qt+1 = j |qt = i)p(~xt+1|qt+1 = j)p(~xt+2, . . . , ~xT |qt+1 = j)

=
N∑
j=1

aijbj(~xt+1)βt+1(j)
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The Backward Algorithm

Now let’s use the definition βt(i) ≡ p(~xt+1, . . . , ~xT |qt = i ,Λ), and
see how we can compute that.

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

aijbj(~xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

p(X |Λ) =
N∑
i=1

πibi (~x1)β1(i)
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The Backward Algorithm: Computational Complexity

Most of the computational complexity is in this step:

Iterate:

βt(i) =
N∑
j=1

aijbj(~xt+1)βt+1(j), 1 ≤ i ≤ N, 2 ≤ t ≤ T

Its complexity is:

For each of T − 1 time steps, 1 ≤ t ≤ T − 1,. . .

we need to calculate N different beta-variables, βt(i), for
1 ≤ i ≤ N,. . .

each of which requires a summation with N terms.

So the total complexity is O
{
TN2

}
.
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Use Bayes’ Rule

The segmentation probability is then

γt(i) =
p(X , qt = i |Λ)∑N

k=1 p(X , qt = k|Λ)

=
p(~x1, . . . , ~xt , qt = i |Λ)p(~xt+1, . . . , ~xT |qt = i ,Λ)∑N

k=1 p(~x1, . . . , ~xt , qt = k |Λ)p(~xt+1, . . . , ~xT |qt = k ,Λ)

=
αt(i)βt(i)∑N

k=1 αt(k)βt(k)
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What About State Sequences?

Notice a problem: γt(i) only tells us about one frame at a
time! It doesn’t tell us anything about the probability of a
sequence of states, covering a sequence of frames!

. . . but we can extend the same reasoning to cover two or
more consecutive frames. For example, let’s define:

ξt(i , j) = p(qt = i , qt+1 = j |X ,Λ)

We can solve for ξt(i , j) using the same reasoning that we
used for γt(i)!
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Segmentation: The Backward Algorithm

In summary, we now have three new probabilities, all of which can
be computed in O

{
TN2

}
time:

1 The Backward Probability:

βt(i) = p(~xt+1, . . . , ~xT |qt = i ,Λ)

2 The State Posterior:

γt(i) = p(qt = i |X ,Λ) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)

3 The Segment Posterior:

ξt(i , j) = p(qt = i , qt+1 = j |X ,Λ)

=
αt(i)aijbj(~xt+1)βt+1(j)∑N

k=1

∑N
`=1 αt(k)ak`b`(~xt+1)βt+1(`)
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Maximum Likelihood Training

Suppose we’re given several observation sequences of the form
X = [~x1, . . . , ~xT ]. Suppose, also, that we have some initial guess
about the values of the model parameters (our initial guess doesn’t
have to be very good). Maximum likelihood training means we

want to compute a new set of parameters, Λ′ =
{
π′i , a

′
ij , b
′
j(~x)

}
that maximize p(X |Λ′).

1 Initial State Probabilities: Find values of π′i , 1 ≤ i ≤ N,
that maximize p(X |Λ′).

2 Transition Probabilities: Find values of a′ij , 1 ≤ i , j ≤ N,
that maximize p(X |Λ′).

3 Observation Probabilities: Find values of the neural network
parameters such that b′j(~x) maximizes p(X |Λ′).
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Maximum Likelihood Training with Known State Sequence

Impossible assumption: Suppose that we actually know the state
sequences, Q = [q1, . . . , qT ], matching with each observation
sequence X = [~x1, . . . , ~xT ]. Then the maximum likelihood
parameters (the Λ′ that maximizes p(X ,Q|Λ′) would be given by

1 Initial State Probabilities:

π′i =
# state sequences that start with q1 = i

# state sequences in training data

2 Transition Probabilities:

a′ij =
# frames in which qt−1 = i , qt = j

# frames in which qt−1 = i

3 Observation Probabilities: Re-estimate the neural network
in order to maximize the log likelihood of the actual state
sequence, i.e., minimize the following loss function:

L = −
T∑
t=1

ln bqt (~xt)
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Expectation Maximization

When the true state sequence is unknown, then we can’t maximize
the likelihood p(X ,Q|Λ′) directly. Instead, we maximize the
expected log likelihood, EQ [ln p(X ,Q|Λ′)], where the expectation
is over the unknown (hidden) state sequence.

1 Initial State Probabilities:

π′i =
E [# state sequences that start with q1 = i ]

# state sequences in training data

2 Transition Probabilities:

π′i =
E [# frames in which qt−1 = i , qt = j ]

E [# frames in which qt−1 = i ]

3 Observation Probabilities:

L = −
T∑
t=1

E [ln bqt (~xt)]
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Calculating the Expectations

Now let’s talk about how to calculate those expectations.

In the tth frame, the event qt = i , qt+1 = j either happens, or
it doesn’t happen.

So the following expectation is actually just a probability:

E
[
# times during the tth frame, in which qt = i , qt+1 = j

]
= p(qt = i , qt+1 = j)

Now we need to ask, in order to compute p(qt = i , qt+1 = j),
what other information do we get to use? The answer is: the
more information you can use, the better your answer will be.
So if we already have a previous estimate of Λ, and we know
X , then let’s use them:

E [# times, during just one frame, in which qt = i , qt+1 = j ]

= p(qt = i , qt+1 = j |X ,Λ)

= ξt(i , j)
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The Baum-Welch Algorithm

1 Initial State Probabilities:

π′i =
E [# state sequences that start with q1 = i ]

# state sequences in training data

=

∑
sequences γ1(i)

# sequences
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The Baum-Welch Algorithm

1 Initial State Probabilities:

π′i =

∑
sequences γ1(i)

# sequences

2 Transition Probabilities:

a′ij =
E [# frames in which qt−1 = i , qt = j ]

E [# frames in which qt−1 = i ]

=

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)
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The Baum-Welch Algorithm

1 Initial State Probabilities:

π′i =

∑
sequences γ1(i)

# sequences

2 Transition Probabilities:

a′ij =

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)

3 Observation Probabilities:

L = −
T∑
t=1

E [ln bqt (~xt)]

= −
T∑
t=1

N∑
i=1

γt(i) ln bi (~xt)
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The Baum-Welch Algorithm

1 Initial State Probabilities:

π′i =

∑
sequences γ1(i)

# sequences

2 Transition Probabilities:

a′ij =

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)

3 Observation Probabilities:

L = −
T∑
t=1

N∑
i=1

γt(i) ln bi (~xt)
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Example: Gumball Machines

“Gumball machines in a Diner at Dallas, Texas, in 2008,” Andreas Praefcke, public domain image.
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Example: Gumball Machines

Observation Probabilities: Suppose we have two gumball
machines, q = 1 and q = 2. Machine #1 contains 60%
Grapefruit gumballs, 40% Apple gumballs. Machine #2
contains 90% Apple, 10% Grapefruit.

b1(x) =

{
0.4 x = A

0.6 x = G
, b2(x) =

{
0.9 x = A

0.1 x = G

Initial State Probabilities: My friend George flips a coin to
decide which machine to use first.

πi = 0.5, i ∈ {1, 2}
Transition Probabilities: After he’s used a machine, George
flips two coins, and he only changes machines if both coins
come up heads.

aij =

{
0.75 i = j

0.25 i 6= j
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A Segmentation Problem

George bought three gumballs, using three quarters. The
three gumballs are (x1 = A, x2 = G , x3 = A).

Unfortunately, George is a bit of a goofball. The second of the
three “quarters” was actually my 1867 silver “Seated Liberty”
dollar, worth $4467.

Which of the two machines do I need to dismantle in order to
get my coin back?

Image used with permission of the National Numismatic Collection, National Museum of American History.
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The Forward Algorithm: t = 1

Remember, the observation sequence is X = (A,G ,A).

α1(i) = πib1(i)

=

{
(0.5)(0.4) = 0.2 i = 1

(0.5)(0.9) = 0.45 i = 2
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The Forward Algorithm: t = 2

Remember, the observation sequence is X = (A,G ,A).

α2(j) =
2∑

i=1

α1(i)aijbj(x2)

=

{
α1(1)a11b1(x2) + α1(2)a21b1(x2) j = 1

α1(1)a12b2(x2) + α1(2)a22b2(x2) j = 2

=

{
(0.2)(0.75)(0.6) + (0.45)(0.25)(0.6) = 0.04125 j = 1

(0.2)(0.25)(0.1) + (0.45)(0.75)(0.1) = 0.03875 j = 2
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The Backward Algorithm: t = 3

The backward algorithm always starts out with βT (i) = 1!

β3(i) = 1, i ∈ {1, 2}
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The Backward Algorithm: t = 2

Remember, the observation sequence is X = (A,G ,A).

β2(i) =
2∑

j=1

aijbj(x3)β3(j)

=

{
a11b1(x3) + a12b2(x3) i = 1

a21b1(x3) + a22b2(x3) i = 2

=

{
(0.75)(0.4) + (0.25)(0.9) = 0.525 j = 1

(0.25)(0.4) + (0.75)(0.9) = 0.775 j = 2
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The Solution to the Puzzle

Given the observation sequence is X = (A,G ,A), the posterior
state probability is

γ2(i) =
α2(i)β2(i)∑2

k=1 α2(k)β2(k)

=

{
(0.04125)(0.525)

(0.04125)(0.525)+(0.03875)(0.775) = 0.42 i = 1
(0.03875)(0.775)

(0.04125)(0.525)+(0.03875)(0.775) = 0.58 i = 2

So I shoud dismantle gumball machine #2, hoping to find my rare
1867 silver dollar. Good luck!
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The Forward Algorithm

Definition: αt(i) ≡ p(~x1, . . . , ~xt , qt = i |Λ). Computation:

1 Initialize:
α1(i) = πibi (~x1), 1 ≤ i ≤ N

2 Iterate:

αt(j) =
N∑
i=1

αt−1(i)aijbj(~xt), 1 ≤ j ≤ N, 2 ≤ t ≤ T

3 Terminate:

p(X |Λ) =
N∑
i=1

αT (i)
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The Backward Algorithm

Definition: βt(i) ≡ p(~xt+1, . . . , ~xT |qt = i ,Λ). Computation:

1 Initialize:
βT (i) = 1, 1 ≤ i ≤ N

2 Iterate:

βt(i) =
N∑
j=1

aijbj(~xt+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1

3 Terminate:

p(X |Λ) =
N∑
i=1

πibi (~x1)β1(i)
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The Baum-Welch Algorithm

1 Initial State Probabilities:

π′i =

∑
sequences γ1(i)

# sequences

2 Transition Probabilities:

a′ij =

∑T−1
t=1 ξt(i , j)∑N

j=1

∑T−1
t=1 ξt(i , j)

3 Observation Probabilities:

L = −
T∑
t=1

N∑
i=1

γt(i) ln bi (~xt)
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1 Start in state qt = i with pmf πi .

2 Generate an observation, ~x , with pdf bi (~x).

3 Transition to a new state, qt+1 = j , according to pmf aij .

4 Repeat.
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