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Review: Neural Network

Let’s review how a neural net works. Suppose we have a net with
two layers, whose weight matrices are

W (1) =

[
2 −1
0 1

]
, W (2) =

[
−0.1 0.03
0.2 0.05

]
and with no bias vectors. Suppose it uses ReLU nonlinearity in the
hidden layer.
As in Faster-RCNN, let’s suppose that the two different outputs
are treated in two different ways:

1 The first element of the output vector, ŷ0, is a regression
output: no output nonlinearity. Loss function is MSE if the
classification target is 1 (y1 = 1), otherwise the loss is zero.

2 The second element of the output vector, ŷ1, is a classification
output: sigmoid nonlinearity, scored with binary cross entropy.
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Neural Network Example

Let’s suppose we have a minibatch with just one training token:

~x = [4, 1]

Suppose that the regression target (the first output target) is
y0 = 0.4, and the classification target (the second output target) is
y1 = 0 (i.e., no object is present), so that

~y = [0.4, 0]
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Forward Pass: First layer

Suppose the input vector is ~x = [4, 1]. The hidden layer excitation
is

~e(1) = ~xW (1) = [4, 1]

[
2 −1
0 1

]
= [8,−3]

The hidden layer activation is

~h = ReLU
(
~e(1)
)

= [8, 0]
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Forward Pass: Second Layer

The second layer excitation is

~e(2) = ~hW (2) = [8, 0]

[
−0.1 0.03
0.2 0.05

]
= [−0.8, 0.24]

The activation function is linear for the first output, but sigmoid
for the second output:

ŷ =

[
−0.8,

1

1 + e−0.24

]
= [−0.8, 0.56]
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Loss Function

Remember that the target is ~y = [0.4, 0], and the network output
is ŷ = [−0.8, 0.56]. The first output, ŷ0, is scored using mean
squared error if y1 = 1, otherwise it is not scored at all, thus

Lr = y1
1

2
(y0 − ŷ0)2 = 0× 1

2
(−0.8− 0.4)2 = 0× 0.72 = 0

The second output, ŷ1, is scored using binary cross entropy, thus

Lc = − (y1 ln ŷ1 + (1− y1) ln(1− ŷ1)) = − ln(1− 0.56)
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Backward Pass: Second Layer

Both BCE and MSE have the same simple form for the
output-layer loss gradient:

∇~e(2)L = (ŷ − ~y)

But the first term (the regression loss) is scored if and only if
y1 = 1. Since, in our example, y1 = 0, we have

∇~e(2)L = [0× (−0.8− 0.4), (0.56− 0)] = [0, 0.56]
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Backward Pass: First Layer Activations

The derivative of loss with respect to the first-layer activations is
obtained by back-propagating from the second-layer, which is just
multiplying by the transpose of the weight matrix:

∇~h
L = ∇~e(2)LW (2),T .

In our example,

∇~h
L = [0, 0.56]

[
−0.1 0.2
0.03 0.05

]
= [0.0168, 0.028]
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Backward Pass: First Layer Excitations

The first-layer excitation gradient is is obtained by multiplying the
activation gradient by the derivative of the nonlinearity.

∇~e(1)L = ∇~h
L � ∂h

∂e(1)

In the case of ReLU, the derivative is either 0 or 1, so

∇~e(1)L = [0.0168, 0.028]� [1, 0] = [0.0168, 0]
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Weight Gradients

The weight gradients are the vector outer products of the forward
pass and the backward pass:

∇W (1)L = (~x)T (∇~e(1)L) =

[
4
1

]
[0.0168, 0] =

[
0.0672 0
0.0168 0

]

∇W (2)L =
(
~h
)T

(∇~e(2)L) =

[
8
0

]
[0, 0.56] =

[
0 4.48
0 0

]
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Summary

Forward-pass is a matrix multiply:

~e = ~hW

Backward-pass is multiplication by the transposed matrix:

∇~h
L = (∇~eL) (W )T

Weight gradient is a vector outer product:

∇WL =
(
~h
)T

(∇~eL)
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Speech Recognition: So Far

Speech recognition using a nearest-neighbor classifier

. . . works very well for isolated-word recognition, in
vocabularies of up to about ten different words.

. . . fails. . .

. . . for detection/segmentation. Nearest-neighbors can’t tell
you where the word started, where it ended.
. . . for continuous speech recognition. Nearest-neighbors can’t
transcribe a sequence of words.
. . . for large vocabularies. If you want to add a new word to
the vocabulary, you need to record examples of that word; not
very scalable, if you want 100k words.
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Large-Vocabulary Continuous Speech Recognition (LVCSR)

An LVCSR has two components:

1 Acoustic model. This is a neural net that classifies which
speech sound is being produced at any given instant.

2 Pronunciation model + Language model. Converts a sequence
of speech sounds to a sequence of words. Three technologies,
each requires more training data than the last:

hidden Markov model (HMM)
recurrent neural network (RNN)
attention-based sequence-to-sequence (Transformer)
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Acoustic Event Detection, Video Event Detection

BTW, the same two parts exist in most acoustic event detection
(AED) and multimedia activity transcription models:

1 Acoustic/Visual model. This is a neural net that classifies
which acoustic event/visual event is occurring at any given
instant.

2 Sequence model: arranges atomic acoustic/visual events into
acoustic scenes or complex events/activity sequences.



Review LVCSR Phonemes Bayesian vs. Discriminative Softmax as a Posterior Summary

Large-Vocabulary Continuous Speech Recognition (LVCSR)

Today we’ll focus on this one:

Acoustic model. This is a neural net that classifies which
speech sound is being produced at any given instant.

Thursday we’ll focus on this one:

Pronunciation model + Language model. Converts a sequence
of speech sounds to a sequence of words:

hidden Markov model (HMM)
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Large-Vocabulary Continuous Speech Recognition (LVCSR)

Today we’ll focus on this one:

Acoustic model. This is a neural net that classifies which
speech sound is being produced at any given instant.

But what does that mean, “which speech sound is being
produced”?
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Phonemes

A phoneme is

a speech segment (temporally contiguous) that

can be used to make up new words, but is also used in
existing words, and

if you change it to a different phoneme, you can change the
meaning of the word.
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Phonemes: Example

Who’d heed a gardener who had never hid his head in a hood?
How’d you believe him? Have you heard that he hayed, or hoed, or
carried a hod, or hied his hoy to HUD?

General American English has 15 vowels, if you count schwa ([@])

Example IPA ARPA Example IPA ARPA Example IPA ARPA
heed [i] IY who’d [u] UW heard [Ç] ER
hid [I] IH hood [U] UH how’d [aU] AW
hayed [e] EY hoed [o] OW hied [AI] AY
head [E] EH HUD [2] AH hoy [OI] OY
had [æ] AE hod [A] AA a [@] AX
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Phoneme Notations

There are two types of phoneme notations that you should know
about for this course.

1 The International Phonetic Alphabet (IPA:
https://en.wikipedia.org/wiki/International_

Phonetic_Alphabet). Invented in Europe around 1888.

2 ARPABET (https://en.wikipedia.org/wiki/ARPABET) is
a set of ASCII (plaintext) codes for English phonemes. Still
used on systems where unicode support is uncertain.

https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/ARPABET
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Phonemes: Example

The quick brown fox jumped over the lazy dog.
[D@ kwIk bõaUn fAks dZ2mpt ovÇ D@ lezi dAg]

General American English has 24 consonants

Stops & IPA ARPA Fricatives IPA ARPA Nasals& IPA ARPA
Affricates Glides
poe [p] P fan [f] F moo [m] M
bo [b] B van [v] V no [n] N
tow [t] T thin [T] TH sing [N] NG
dough [d] D than [D] DH woe [w] W
cho [tS] CH Sue [s] S low [l] L
joe [dZ] JH zoo [z] Z row [õ] R
ko [k] K ship [S] SH yo [j] Y
go [g] G beige [Z] ZH ho [h] HH
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How to use phonemes

Phonemes are used:

1 . . . for detection/segmentation. Nearest-neighbors can’t tell
you where the word started, where it ended.

2 . . . for continuous speech recognition. Nearest-neighbors can’t
transcribe a sequence of words.

3 . . . for large vocabularies. If you want to add a new word to
the vocabulary, you need to record examples of that word; not
very scalable, if you want 100k words.
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How to Use Phonemes, #1: Segmentation

Suppose you want to find where each word starts and ends.
Phoneme models can help:

https://catalog.ldc.upenn.edu/LDC93S1
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How to Use Phonemes, #2: CSR

Suppose you want to transcribe a sequence of words. You can do
that by trying to recognize a sequence of phones, restricted to only
those sequences that form valid sentences:

https://catalog.ldc.upenn.edu/LDC93S1
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How to Use Phonemes, #2: Large Vocabulary

Suppose you have good models of each phoneme. Now you want
to recognize the word “supercalifragilisticexpialidocious.” No
problem. You just create a new word model, by stringing together
the phoneme models like this:

Dictionary entry for “supercalifragilisticexpialidocious”

supÇkælIfrædZIlIstIkEkspiælIdoS2s
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Generalizing from one language to another

Two phonemes are different if they distinguish two words,
e.g., “bat” vs. “pat.” Therefore, phonemes are
language-dependent.

However, many languages have similar phonemes, e.g., most
languages have /mama/.

Phones are discrete segmental units, like phonemes, but not
required to be language-dependent. In fact, we mostly just
choose a phone set which is most convenient for our own
software.
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Phones vs. Phonemes: Example

Two phones that are different phonemes in French, but the same
phoneme in English

French has the words ou ([u], “or”) and eu ([y], “had”), that
sound like the same vowel in English, but are different vowels
in French.

The phone /y/ (rounded /i/) is not part of the phoneme
inventory of English. If an English speaker hears it, they think
you’re saying either /u/ or /i/.

Two phones that are different phonemes in English, but the same
phoneme in Spanish

English has the words thin (/TIn/) and sin (/sIn/). In Spanish,
these sound like two versions of the same word (cien), pronounced
with European vs. Latin American accent, respectively.
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“Language Independent and Language Adaptive Large
Vocabulary Speech Recognition,” Schultz & Waibel, 1998
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Neural net phone models: Basic setup

Start with mel-filterbank or gammatone features, say, 40
dimensions per frame. Concatenate 11 frames together,
centered at frame t, and call that ~x (440 dimensions).

Define q to be the “state” at time t.

For now we’ll say “state”=”phone,” q ∈ {1, . . . , 39}, because
there are 39 phonemes in English.
In a real experimental system, we might subdivide each phone
into two or three states, each of which has forty or fifty
context-dependent variants, which would give q ∈ Q where
|Q| = 39× 3× 50 = 5850 or so.

The neural net output is a 39-vector ŷt such that

ŷ [i ] = p (q = i |~x) , 1 ≤ i ≤ 39
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Discriminative Phone Classifier

A discriminative phone classifier chooses, in each frame,

q∗ = argmax ŷ [q] = argmax p (q|~x)

That’s the optimal thing to do if ~x is the only information we
have.

If we have other information, then q∗ = argmax ŷ [q] is
suboptimal because it ignores our other information.
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Other Sources of Information

What other sources of information might we have? Here are two
possibilities:

1 Information about Genre: Maybe the test speech and
training speech are about different subjects. In the training
speech, a particular phoneme (say, q = k) never occurs,
therefore the neural network always gives it a very low
probability (q(q = k |~x) ≈ 0), regardless of ~x . We know the
test genre, so we know that q = k should be much more
frequent. How can we fix that?

2 Information about Sequence: Maybe we have a language
model that tells us p(q|C ), which is the probability of
observing phone q after a particular context of preceding
phones, (C = (q1, . . . , qt−1)). How can we combine p(q|C )
with p (q|~x)?



Review LVCSR Phonemes Bayesian vs. Discriminative Softmax as a Posterior Summary

Bayesian Phone Classifier

A Bayesian phone classifier fuses information from multiple sources
using Bayes’ rule:

p(q = i |C , ~x) =
p(q = i |C )p(~x |q = i)∑
j p(q = j |C )p(~x |q = j)

Then, after performing information fusion, we can choose the
most probable phone:

q∗ = argmax p(q = i |C , ~x)

Now we have just one problem. How can we compute p(~x |q)?
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The four Bayesian probabilities

A Bayesian classifier is defined if we know any row or column from
the following table:

Probability Mass Functions
(pmf) (must be non-negative
and sum up to 1)

Probability Density Functions
(pdf) (must be non-negative,
but need not be less than 1)

Prior:
p(q)

Likelihood:

p(~x |q)
Posterior:

p(q|~x)

Evidence:

p(~x)
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Why can we interpret ŷ [i ] as a posterior?

Remember why we can say ŷ [i ] = p (q = i |~x). It’s because of two
things:

1 ŷ is trained using MSE for linear outputs (or using
cross-entropy for softmax outputs, which has the same
gradient), so, given enough training data, it learns

ŷ [i ] = E [y [i ]|~x ] = p (y [i ] = 1|~x)

2 ŷ is computed using a softmax nonlinearity, which guarantees
that ŷ [i ] > 0 and

39∑
j=1

ŷ [i ] = 1
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The form of the softmax nonlinearity

Remember that we define the softmax as a nonlinear transform
from some excitation, e

(2)
j , to its output activation, ŷ [j ]. Let’s

drop the superscript, so we can write

ŷ [i ] =
exp(e[i ])∑39
j=1 exp(e[j ])

.

Bayes’ rule

Bayes’ rule defines a method for computing p(q|~x) in terms of
p(~x |q). It is

p(q = i |~x) =
p(q = i , ~x)∑39
j=1 p(q = j , ~x)

Notice the similarity in those two equations. Can we make use of
that?
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Relationship between softmax and Bayes’ rule

Suppose the neural net has been trained so that ŷ [i ] = p(q = i |~x).
Then we can write

p(q = i , ~x)∑39
j=1 p(q = j , ~x)

=
G exp(e[i ])

G
∑39

j=1 exp(e[j ])
.

The only way this can be true is if

p(q = i , ~x) = G exp(e[i ])

for some value of G . The only problem: we have no idea what G
is. We have to be a little careful in our derivations, but usually we
can just choose some value with good numerical properties, like
G = 1/maxj exp(e[j ]) for example.
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Bayesian probabilities and Neural nets

Here’s how we can estimate the four Bayesian probabilities using a
neural net:

1 Prior:

p(q = i) =
# times q = i occurred in training data

# frames in training data

2 Posterior:
p(q = i |~x) = softmax (e[i ])
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Bayesian probabilities and Neural nets

Here’s how we can estimate the four Bayesian probabilities using a
neural net:

1 Evidence:
p(~x) = G

∑
j

exp(e[j ])

for some unknown value of G .

2 Likelihood:

p(~x |q = i) =
G exp(e[i ])

p(q = i)

We have to be a little careful in our derivations, but usually we can
just choose some value of G with good numerical properties, like
G = 1/maxj exp(e[j ]) for example.
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Why the likelihood is useful

1 Train-test mismatch. Suppose that some particular phone
(q = i , say) was almost never seen in training data, but it
might occur sometimes in test data.

p(q = i |~x) ≈ 0, because it was never seen in training data. If
you classify using q∗ = argmax p(q|~x), it will never get
recognized.
p(q = i) ≈ 0 is also very small. Therefore

p(~x |q = i) =
G exp(e[i ])

p(q = i)

might be reasonably-sized, and might sometimes get
recognized.

2 Information fusion. Suppose you have a language model
that tells you p(q|C ), the probability of q given some context
variable C . Then

p(q, ~x |C ) = p(~x |q)p(q|C )
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Summary: Neural Nets and Probability

The two most important Bayesian probabilities are

Posterior: This is what you want if there is no train-test
mismatch, and if you don’t need to do information fusion. It
is given by

p(q = i |~x) = softmax(e[i ]) =
exp(e[i ])∑
j exp(e[j ])

Likelihood: This is what you want if there is train-test
mismatch, or if you need to fuse information from two or more
different sources. It is given by

p(~x |q = i) =
G exp(e[i ])

p(q = i)

where G is an unknown constant. We have to be a little
careful in our derivations, but usually we can just choose some
value of G with good numerical properties, like
G = 1/maxj exp(e[j ]) for example.
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Where We’re Going Next: Information Fusion

Next time, we will talk about a particular type of context
information: the pronunciation model and language model, in the
form of a hidden Markov model.
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