Lecture 9: Convolutional Neural Nets

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2020

© Review: Neural Network
© Convolutional Layers
© Max Pooling

@ A Few Important Papers

e Summary

Review

Outline

@ Review: Neural Network

Review
©0000

Review: How to train a neural network

@ Find a training dataset that contains n examples showing
the desired output, y;, that the NN should compute in
response to input vector X;:

D= {(>?17)71)a Tt (;n7Yn)}

@ Randomly initialize the weights and biases, W(l), 5(1), W(Z),
and b,

© Perform forward propagation: find out what the neural net
computes as y; for each X;.

@ Define a loss function that measures how badly y differs
from y.

@ Perform back propagation to improve W), p(1) W) and
b2,

O Repeat steps 3-5 until convergence.

Review
0e000

Review: Second Layer = Piece-Wise Approximation

The second layer of the network approximates y using a bias term

b, plus correction vectors vngz), each scaled by its activation h;:

~ P((2
yzb(2)+ZWj()hj
Jj

@ Unit-step and signum nonlinearities, on the hidden layer,
cause the neural net to compute a piece-wise constant
approximation of the target function. Sigmoid and tanh are
differentiable approximations of unit-step and signum,
respectively.

@ RelU, Leaky RelLU, and PRelLU activation functions cause h;,
and therefore y, to be a piece-wise-linear function of its inputs.

Review
00®00

Review: First Layer = A Series of Decisions

The first layer of the network decides whether or not to “turn on’
each of the h;'s. It does this by comparing X to a series of linear
threshold vectors:

()=
_ >0 X+ b >0

b = o (W% + b k

g (k k> =0 WX+ b <0

Review
[ee]eY To)

Gradient Descent: How do we improve W and b?

Given some initial neural net parameter (called uy; in this figure),
we want to find a better value of the same parameter. We do that
using gradient descent:

- dl
Ui — Upi —

kj kj ndukj,

where 7 is a learning rate (some small constant, e.g., n = 0.02 or
s0).

Neural Net Error Surface (Schematic)

g Error E (UV)

o :
= -1

o 05 1

15
Network Weight u,

Review
ooooe

Error Metrics Summarized

@ Use MSE to achieve y — E [y|X]. That's almost always what
you want.

@ For a binary classifier with a sigmoid output, BCE loss gives
you the MSE result without the vanishing gradient problem.

@ For a multi-class classifier with a softmax output, CE loss
gives you the MSE result without the vanishing gradient
problem.

@ After you're done training, you can make your cell phone app
more efficient by throwing away the uncertainty:
e Replace softmax output nodes with max
e Replace logistic output nodes with unit-step
o Replace tanh output nodes with signum

Convolutional Layers

Outline

© Convolutional Layers

Convolutional Layers
©000000000000

Multimedia Inputs = Too Much Data

Does this image contain a cat?
Fully-connected solution:

y=0 (W(2)17>
h = ReLU (W(1)>‘<'>

where X contains all the pixels.

@ Image size 2000 x 3000 x 3 = 18,000, 000

dimensions in X.

o If h has 500 dimensions, then W(1) has
500 x 18,000,000 = 9,000, 000,000 parameters.

@ ...so we should use at least 9,000,000, 000
images to train it.

Convolutional Layers
0®00000000000

Shift Invariance

The cat has moved. The fully-connected network has no way to
share information between the rows of W) that look at the
center of the image, and the rows that look at the right-hand side.

Convolutional Layers
0O®0000000000

How to achieve shift invariance: Convolution

Instead of using vectors as layers, let's use images.
e(’)[m, n,d] = Z Z Z w(’)[m’, n',c, d]h(/_l)[m —m',n—n',c]
c m n

where
o e)[m, n,c] and h)[m, n, c] are excitation and activation
(respectively) of the (m, n)*™® pixel, in the c* channel, in the
I*™® layer.

o w{)[m, n, c,d] are the weights.

Convolutional Layers
000®000000000

How to achieve shift invariance: Convolution

(=)bM+]

Convolutional Layers
0000®00000000

How to use convolutions in a classifier

@ The zero™ layer is the input image:
hO[m, n,c] = x[m, n, c]

@ Excitation and activation:

e(/)[m7 n,d] = Z Z Z w[m', n', c, d]h(’_l)[m —m',n—n]
Cc

m' n

hD[m, n, d] = ReLU (e(’)[m, n, d])

@ Reshape the last convolutional layer into a vector, to form the
first fully-connected layer:

Wa D en = hO[m, n]

where N is the image dimension (both height and width).

Convolutional Layers
00000®0000000

How to use convolutions in a classifier

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

“Typical CNN,” by Aphex34 2015, CC-SA 4.0, https://commons.wikimedia.org/wiki/File:Typical_cnn.png

https://commons.wikimedia.org/wiki/File:Typical_cnn.png

Convolutional Layers
000000®000000

How to back-prop through a convolutional neural net

You already know how to back-prop through fully-connected layers.
Now let's back-prop through convolution:

)[m, n,d]
’1[m n,c] Zm:zzde(’)[mnd]éh’l[m,n,c]
The partial derivative is easy:
eNm, n,d] = Z Z Z wlm—m',n—n',c,d|h="D[m' i,]
c m

(Om, n, d]
OhU=D[m’ . n’, c]

=w[m—m',n—n c, d]

Putting all of the above equations together, we get:

dL dl
- Dim—m' . n—n =
Tl <] Zzzd:w [m—m',n n,c,d]del[m’ ol

m n

Convolutional Layers
0000000e00000

Convolution forward, Correlation backward

In signal processing, we defined x[n] * h[n] to mean
>~ h[m]x[n — m]. Let's use the same symbol to refer to this
multi-channel 2D convolution:

(’)[m, n,d] = Z Z Z w(’)[m —m',n—n',c, d]h(l_l)[m’7 ', c]

= w() [m, n,c,d] * h(lfl)[m7 n, cj

Back-prop, then, is also a kind of convolution, but with the filter
flipped left-to-right and top-to-bottom. Flipped convolution is also
known as “correlation "

___dE mrl — __dE
dh(=1) [m n, d] ZZZ Al —m, ol —n,d, C]de’[m’,n’,c]
dl

= wD[—m. — =
w'\[—m, n’d’c]*de’[m,n,c]

Convolutional Layers
0000000080000

Back-prop through a convolutional layer

(=)bM+]

Convolutional Layers
0000000008000

Similarities between convolutional and fully-connected

back-prop

@ In a fully-connected layer, forward-prop is a matrix multiply.
Back-prop is multiplication by the transpose of the same
matrix:

&) — WD
T
Vil = (W(’)) VL

@ In a convolutional layer, forward-prop is a convolution,
Back-prop is a correlation:

eNm, n,d] = wD[m, n,c,d]* '"D[m, n,]
dl dl

= W Dem. —n. d =
e Il [-m, —n, ,c]*de(/)[mm?C]

Convolutional Layers
0000000000e00

Convolutional layers: Weight gradient

Finally, we need to combine back-prop and forward-prop in order to
find the weight gradient:
Z Z ae(l)[m, n, d]
[m n,c,d del! [m n, d] owD[m', n’, c, d]

Again, the partial derivative is very easy to compute:

eNm, n,d] = ZZZ wlm', o, e, d|h"D[m—m',n—n,]

oeN[m, n, d]
owl=D[m' ']

= A" Dm—m' n—n',

Convolutional Layers
0000000000080

Convolutional layers: Weight gradient

dc _ZZ dl e [m, n, d]
dwD[m' ' c,d] — & de(N[m, n, d] owN[m', ', ¢, d]

deD[m, n, d]
owl=D[m' ',]

= Vm—m' n—n,

Putting those together, we discover that the weight gradient is
ALSO a convolution!!!

dL dc
= 7’7(/—1) _ / R
O . d] 2o 2 el

dc -
= de(/)[m” " d] * h()[m/’ n” C]

Convolutional Layers
000000000000e

Steps in training a CNN

@ Forward-prop:
eDm, n,d] = wD[m, n, c,d]* h'"Dm, n, c]

© Back-prop:

dl

dl
—wD[=m. — e
w'[—m,—n,d, c] % e [m,]

dh(=U[m, n,d]
© Weight gradient:

dl dl

= h(lfl)
dw(N[m,n,c,d] de(N[m, n,d| * [m, n, c]

Max Pooling

Outline

© Max Pooling

Max Pooling
[Jelelelolote}

Features and PWL Functions

Remember the PWL model of a ReLU neural net:

© The hidden layer activations are positive if some feature is
detected in the input, and zero otherwise.

@ The rows of the output layer are vectors, scaled by the hidden
layer activations, in order to approximate some desired
piece-wise-linear (PWL) output function.

© What happens next is different for regression and
classification:

@ Regression: The PWL output function is the desired output.
@ Classification: The PWL function is squashed down to the
[0,1] range using a sigmoid.

Max Pooling
[e] Telelolote}

Features and PWL Functions

In image processing, often we don't care where in the image the
“feature” occurs:

Max Pooling
00®0000

Features and PWL Functions

Sometimes we care roughly where the feature occurs, but not
exactly. Blue at the bottom is sea, blue at the top is sky:

“Paracas National Reserve,” World Wide Gifts, 2011, CC-SA 2.0,
https://commons.wikimedia.org/wiki/File:Paracas_National_Reserve, _Ica, Peru-3April2011.jpg.
“Clouds above Earth at 10,000 feet,” Jessie Eastland, 2010, CC-SA 4.0,

https://commons.wikimedia.org/wiki/File:Sky-3. jpg.

https://commons.wikimedia.org/wiki/File:Paracas_National_Reserve,_Ica,_Peru-3April2011.jpg
https://commons.wikimedia.org/wiki/File:Sky-3.jpg

Max Pooling
[eleleY Yolole}

Max Pooling

o Philosophy: the activation h()[m, n, c] should be greater than
zero if the corresponding feature is detected anywhere within
the vicinity of pixel (m, n). In fact, let's look for the best
matching input pixel.

e Equation:

hD[m, n,c] = %E} %@0% RelLU (e(’)[m/\/l +m' nM+n', c])

m’'=0

where M is a max-pooling factor (often M = 2, but not
always).

Max Pooling
[eleleleY Tole}

Max Pooling

Single depth slice
1 2 3

N = O O

4 6 8
3 1 0
1 2 4

W

Y

“max pooling with 2x2 filter and stride = 2,” Aphex34, 2015, CC SA 4.0,

https://commons.wikimedia.org/wiki/File:Max_pooling.png

https://commons.wikimedia.org/wiki/File:Max_pooling.png

Max Pooling
0000080

Back-Prop for Max Pooling

The back-prop is pretty easy to understand. The activation

gradient, D[1S back-propagated to just one of the
excitation gradients in its pool: the one that had the maximum
value.
L dr m = m*, n = n*,
= dh(’)[m,n,c] h(l) [m’ n, C] > 07
de)[mM + m',nM + ', c] _
otherwise,

where
m*, n* = argmax eD[mM + m',nM + ',],

m’,n’

Max Pooling
[elelelelolo) }

Other types of pooling

o Average pooling:
1 M-1m-1
D m, n,c] = v Z Z RelU (e(l)[mM +m' nM + 1, c])
m’=0 n’=0

Philosophy: instead of finding the pixels that best match the
feature, find the average degree of match.

e Decimation pooling:
hD[m, n, c] = ReLU (e(’)[mM, nM, c])

Philosophy: the convolution has already done the averaging
for you, so it's OK to just throw away the other M? — 1 inputs.

Outline

@ A Few Important Papers

Papers
®00

ol |
“Phone Recognition: Neural 'E
Networks vs. Hidden Markov mtegration

Models,” Waibel, Hanazawa,
Hinton, Shikano and Lang, LR
1988 AN

@ 1D convolution

@ average pooling

" o)

@ max pooling invented by
Yamaguchi et al., 1990,

based on this architecture

Image copyright Waibel et al., 1988, released
CC-BY-4.0 2018,
https://commons.wikimedia.org/wiki/File:
TDNN_Diagram.png

15 frames
10 msec frame rate

https://commons.wikimedia.org/wiki/File:TDNN_Diagram.png
https://commons.wikimedia.org/wiki/File:TDNN_Diagram.png

Papers
oceo

“Backpropagation Applied to Handwritten Zip Code
Recognition,” LeCun, Boser, Denker & Henderson, 1989

(2D convolution, decimation pooling)

T so@axd F

Vdy Gl 72@ExE H3

A 72372 H2

A2 2A T

2EX2E INPUT

Image copyright Lecun, Boser, et al., 1990

Papers
ocoe

“Imagenet Classification with Deep Convolutional Neural

Networks,” Krizhevsky, Sutskever & Hinton, 2012 (GPU
training)

8 204¢ 2088 \dense
13
| b
13 dense ldense|
1000
128 Max ol L
Max 128 Max pooling “ 2048
pooling pooling

Image copyright Krizhevsky, Sutskever & Hinton, 2012

Summary

Outline

© Summary

Summary
°

Summary

@ Convolutional layers: forward-prop is a convolution, back-prop
is a correlation, weight gradient is a convolution.

@ Max pooling: back-prop just propagates the derivative to the
pixel that was chosen by forward-prop.

@ Many-layer CNNs trained on GPUs, with small convolutions in
each layer, have won Imagenet every year since 2012, and are
now a component in every image, speech, audio, and video
processing system.

	Review: Neural Network
	Convolutional Layers
	Max Pooling
	A Few Important Papers
	Summary

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:

