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Review: How to train a neural network

1 Find a training dataset that contains n examples showing
the desired output, ~yi , that the NN should compute in
response to input vector ~xi :

D = {(~x1, ~y1), . . . , (~xn, ~yn)}

2 Randomly initialize the weights and biases, W (1), ~b(1), W (2),
and ~b(2).

3 Perform forward propagation: find out what the neural net
computes as ŷi for each ~xi .

4 Define a loss function that measures how badly ŷ differs
from ~y .

5 Perform back propagation to improve W (1), ~b(1), W (2), and
~b(2).

6 Repeat steps 3-5 until convergence.
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Review: Second Layer = Piece-Wise Approximation

The second layer of the network approximates ŷ using a bias term
~b, plus correction vectors ~w

(2)
j , each scaled by its activation hj :

ŷ = ~b(2) +
∑
j

~w
(2)
j hj

The activation, hj , is a number between 0 and 1. For example, we
could use the logistic sigmoid function:

hk = σ
(
e

(1)
k

)
=

1

1 + exp(−e(1)
k )
∈ (0, 1)

The logistic sigmoid is a differentiable approximation to a unit step
function.
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Review: First Layer = A Series of Decisions

The first layer of the network decides whether or not to “turn on”
each of the hj ’s. It does this by comparing ~x to a series of linear
threshold vectors:

hk = σ
(
w̄

(1)
k ~x

)
≈

{
1 w̄

(1)
k ~x > 0

0 w̄
(1)
k ~x < 0
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Gradient Descent: How do we improve W and b?

Given some initial neural net parameter (called ukj in this figure),
we want to find a better value of the same parameter. We do that
using gradient descent:

ukj ← ukj − η
dL
dukj

,

where η is a learning rate (some small constant, e.g., η = 0.02 or
so).
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The Basic Binary
Nonlinearity: Unit Step
(a.k.a. Heaviside function)

u
(
w̄

(1)
k ~x

)
=

{
1 w̄

(1)
k ~x > 0

0 w̄
(1)
k ~x < 0

Pros and Cons of the Unit Step

Pro: it gives exactly piece-wise
constant approximation of any
desired ~y .

Con: if hk = u(ek), then you can’t
use back-propagation to train the
neural network.

Remember back-prop:

dL
dwkj

=
∑
k

(
dL
dhk

)(
∂hk
∂ek

)(
∂ek
∂wkj

)
but du(x)/dx is a Dirac delta function —
zero everywhere, except where it’s
infinite.
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The Differentiable Approximation:
Logistic Sigmoid

σ(b) =
1

1 + e−b

Why to use the logistic function

σ(b) =


1 b →∞
0 b → −∞
in between in between

and σ(b) is smoothly differentiable,
so back-prop works.
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Derivative of a sigmoid

The derivative of a sigmoid is pretty easy to calculate:

σ(x) =
1

1 + e−x
,

dσ

dx
=

e−x

(1 + e−x)2

An interesting fact that’s extremely useful, in computing
back-prop, is that if h = σ(x), then we can write the derivative in
terms of h, without any need to store x :

dσ

dx
=

e−x

(1 + e−x)2

=

(
1

1 + e−x

)(
e−x

1 + e−x

)
=

(
1

1 + e−x

)(
1− 1

1 + e−x

)
= σ(x)(1− σ(x))

= h(1− h)
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Step function and its derivative

The derivative of the step
function is the Dirac delta,
which is not very useful in
backprop.

Logistic function and its derivative
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Signum and Tanh

The signum function is a signed binary nonlinearity. It is used if,
for some reason, you want your output to be h ∈ {−1, 1}, instead
of h ∈ {0, 1}:

sign(b) =

{
−1 b < 0

1 b > 0

It is usually approximated by the hyperbolic tangent function
(tanh), which is just a scaled shifted version of the sigmoid:

tanh(b) =
eb − e−b

eb + e−b
=

1− e−2b

1 + e−2b
= 2σ(2b)− 1

and which has a scaled version of the sigmoid derivative:

d tanh(b)

db
=
(
1− tanh2(b)

)
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Signum function and its derivative

The derivative of the signum
function is the Dirac delta,
which is not very useful in
backprop.

Tanh function and its derivative
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A suprising problem with the sigmoid: Vanishing gradients

The sigmoid has a surprising problem: for large values of w ,
σ′(wx)→ 0.

When we begin training, we start with small values of w .
σ′(wx) is reasonably large, and training proceeds.

If w and ∇wL are vectors in opposite directions, then
w → w − η∇wL makes w larger. After a few iterations, w
gets very large. At that point, σ′(wx)→ 0, and training
effectively stops.

After that point, even if the neural net sees new training data
that don’t match what it has already learned, it can no longer
change. We say that it has suffered from the “vanishing
gradient problem.”
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A solution to the vanishing gradient problem: ReLU

The most ubiquitous solution to the vanishing gradient problem is
to use a ReLU (rectified linear unit) instead of a sigmoid. The
ReLU is given by

ReLU(b) =

{
b b ≥ 0

0 b ≤ 0,

and its derivative is the unit step. Notice that the unit step is
equally large (u(wx) = 1) for any positive value (wx > 0), so no
matter how large w gets, back-propagation continues to work.
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A solution to the vanishing gradient problem: ReLU

Pro: The ReLU derivative is equally large (dReLU(wx)
d(wx) = 1)

for any positive value (wx > 0), so no matter how large w
gets, back-propagation continues to work.

Con: If the ReLU is used as a hidden unit (hj = ReLU(ej)),
then your output is no longer a piece-wise constant
approximation of ~y . It is now piece-wise linear.

On the other hand, maybe piece-wise linear is better than
piece-wise constant, so. . .
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A solution to the vanishing gradient problem: the ReLU

Pro: The ReLU derivative is equally large (dReLU(wx)
d(wx) = 1)

for any positive value (wx > 0), so no matter how large w
gets, back-propagation continues to work.

Pro: If the ReLU is used as a hidden unit (hj = ReLU(ej)),
then your output is no longer a piece-wise constant
approximation of ~y . It is now piece-wise linear.

Con: ??
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The dying ReLU problem

Pro: The ReLU derivative is equally large (dReLU(wx)
d(wx) = 1)

for any positive value (wx > 0), so no matter how large w
gets, back-propagation continues to work.

Pro: If the ReLU is used as a hidden unit (hj = ReLU(ej)),
then your output is no longer a piece-wise constant
approximation of ~y . It is now piece-wise linear.

Con: If wx + b < 0, then (dReLU(wx)
d(wx) = 0), and learning

stops. In the worst case, if b becomes very negative, then all
of the hidden nodes are turned off—the network computes
nothing, and no learning can take place! This is called the
“Dying ReLU problem.”
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Solutions to the Dying ReLU problem

Softplus: Pro: always positive. Con: gradient→ 0 as
x → −∞.

f (x) = ln (1 + ex)

Leaky ReLU: Pro: gradient constant, output piece-wise
linear. Con: negative part might fail to match your dataset.

f (x) =

{
x x ≥ 0

0.01x x ≤ 0

Parametric ReLU (PReLU:) Pro: gradient constant, ouput
PWL. The slope of the negative part (a) is a trainable
parameter, so can adapt to your dataset. Con: you have to
train it.

f (x) =

{
x x ≥ 0

ax x ≤ 0



Review Binary Nonlinearities Classifiers BCE Loss CE Loss Summary

Outline

1 Review: Neural Network

2 Binary Nonlinearities

3 Classifiers

4 Binary Cross Entropy Loss

5 Multinomial Classifier: Cross-Entropy Loss

6 Summary



Review Binary Nonlinearities Classifiers BCE Loss CE Loss Summary

A classifier target funtion

A “classifier” is a neural network with discrete ouputs. For
example, suppose you need to color a 2D picture. The goal is to
output ŷ(~x) = 1 if ~x should be red, and ŷ = −1 if ~x should be
blue:



Review Binary Nonlinearities Classifiers BCE Loss CE Loss Summary

A classifier neural network

We can discretize the output by simply using an output

nonlinearity, e.g., ŷk = g(e
(2)
k ), for some nonlinearity g(x):

1 x1 x2 . . . xD ~x is the input vector

e
(1)
k = b

(1)
k +

∑D
j=1 w

(1)
kj xj

1 h1 h2
. . . hN hk = σ(e

(1)
k )

e
(2)
k = b

(2)
k +

∑N
j=1 w

(2)
kj hj

ŷ1 ŷ2
. . . ŷK ŷk = g(e

(2)
k )

ŷ = h(~x ,W (1), ~b(1),W (2), ~b(2))
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Nonlinearities for classifier neural networks

During testing: the output is passed through a hard
nonlinearity, e.g., a unit step or a signum.

During training: the output is passed through the
corresponding soft nonlinearity, e.g., sigmoid or tanh.



Review Binary Nonlinearities Classifiers BCE Loss CE Loss Summary

Excitation, First Layer: e
(1)
k = b

(1)
k +

∑2
j=1 w

(1)
kj xj
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Activation, First Layer: hk = tanh(e
(1)
k )

Here, I’m using tanh as the nonlinearity for the hidden layer. But it
often works better if we use ReLU or PReLU.
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Excitation, Second Layer: e
(2)
k = b

(2)
k +

∑2
j=1 w

(2)
kj hj
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Activation, Second Layer: ŷk = sign(e
(2)
k )

During training, the output layer uses a soft nonlinearity. During
testing, though, the soft nonlinearity is replaced with a hard
nonlinearity, e.g., signum:
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Review: MSE

Until now, we’ve assumed that the loss function is MSE:

L =
1

2n

n∑
i=1

‖~yi − ŷ(~xi )‖2

MSE makes sense if ~y and ŷ are both real-valued vectors, and
we want to compute ŷMMSE (~x) = E [~y |~x ]. But what if ŷ and
~y are discrete-valued (i.e., classifiers?)

Surprise: MSE works surprisingly well, even with discrete ~y !

But a different metric, binary cross-entropy (BCE) works
slightly better.
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MSE with a binary target vector

Suppose y is just a scalar binary classifier label, y ∈ {0, 1}
(for example: “is it a dog or a cat?”)

Suppose that the input vector, ~x , is not quite enough
information to tell us what y should be. Instead, ~x only tells
us the probability of y = 1:

y =

{
1 with probability p

Y |~X (1|~x)

0 with probability p
Y |~X (0|~x)

In the limit as n→∞, assuming that the gradient descent
finds the global optimum, the MMSE solution gives us:

ŷ(~x)→n→∞ E [y |~x ]

=
(

1× p
Y |~X (1|~x)

)
+
(

0× p
Y |~X (0|~x)

)
= p

Y |~X (1|~x)
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Pros and Cons of MMSE for Binary Classifiers

Pro: In the limit as n→∞, the global optimum is
ŷ(~x)→ p

Y |~X (1|~x).

Con: The sigmoid nonlinearity is hard to train using MMSE.
Remember the vanishing gradient problem: σ′(wx)→ 0 as
w →∞, so after a few epochs of training, the neural net just
stops learning.

Solution: Can we devise a different loss function (not MMSE)
that will give us the same solution (ŷ(~x)→ p

Y |~X (1|~x)), but

without suffering from the vanishing gradient problem?
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Binary Cross Entropy

Suppose we treat the neural net output as a noisy estimator,
p̂
Y |~X (y |~x), of the unknown true pmf p

Y |~X (y |~x):

ŷi = p̂
Y |~X (1|~x),

so that

p̂
Y |~X (yi |~xi ) =

{
ŷi yi = 1

1− ŷi yi = 0

The binary cross-entropy loss is the negative log probability of the
training data, assuming i.i.d. training examples:

LBCE = −1

n

n∑
i=1

ln p̂
Y |~X (yi |~xi )

= −1

n

n∑
i=1

yi (ln ŷi ) + (1− yi ) (ln(1− ŷi ))
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The Derivative of BCE

BCE is useful because it has the same solution as MSE, without
allowing the sigmoid to suffer from vanishing gradients. Suppose
ŷi = σ(whi ).

∇wL = −1

n

∑
i :yi=1

∇w lnσ(whi ) +
∑
i :yi=0

∇w ln(1− σ(whi ))


= −1

n

∑
i :yi=1

∇wσ(whi )

σ(whi )
+
∑
i :yi=0

∇w (1− σ(whi ))

1− σ(whi )


= −1

n

∑
i :yi=1

ŷi (1− ŷi )hi
ŷi

+
∑
i :yi=0

−ŷi (1− ŷi )hi
1− ŷi


= −1

n

n∑
i=1

(yi − ŷi ) hi
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Why Cross-Entropy is Useful for Machine Learning

Binary cross-entropy is useful for machine learning because:

1 Just like MSE, it estimates the true class probability: in

the limit as n→∞, ∇WL → E
[
(Y − Ŷ )H

]
, which is zero

only if

Ŷ = E
[
Y |~X

]
= p

Y |~X (1|~x)

2 Unlike MSE, it does not suffer from the vanishing
gradient problem of the sigmoid.
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Unlike MSE, BCE does not suffer from the vanishing
gradient problem of the sigmoid.

The vanishing gradient problem was caused by σ′ = σ(1− σ),
which goes to zero when its input is either plus or minus infinity.

If yi = 1, then differentiating lnσ cancels the σ term in the
numerator, leaving only the (1− σ) term, which is large if and
only if the neural net is wrong.

If yi = 0, then differentiating ln(1− σ) cancels the (1− σ)
term in the numerator, leaving only the σ term, which is large
if and only if the neural net is wrong.

So binary cross-entropy ignores training tokens only if the neural
net guesses them right. If it guesses wrong, then back-propagation
happens.
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Multinomial Classifier

Suppose, instead of just a 2-class classifier, we want the neural
network to classify ~x as being one of K different classes. There are
many ways to encode this, but one of the best is

~y =


y1

y2
...
yK

 , yk =

{
1 k = k∗ (k is the correct class)

0 otherwise

A vector ~y like this is called a “one-hot vector,” because it is a
binary vector in which only one of the elements is nonzero (“hot”).
This is useful because minimizing the MSE loss gives:

ŷ =


ŷ1

ŷ2
...
ŷK

 =


p̂
Y1|~X (1|~x)

p̂
Y2|~X (1|~x)

...
p̂
YK |~X

(1|~x)

 ,
where the global optimum of p̂

Yk |~X
(y |~x)→ p

Yk |~X
(y |~x) as n→∞.
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One-hot vectors and Cross-entropy loss

The cross-entropy loss, for a training database coded with one-hot
vectors, is

LCE = −1

n

n∑
i=1

K∑
k=1

yki ln ŷki

This is useful because:

1 Like MSE, Cross-Entropy has an asymptotic global
optimum at: ŷk → p

Yk |~X
(1|~x).

2 Unlike MSE, Cross-Entropy with a softmax nonlinearity
suffers no vanishing gradient problem.
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Softmax Nonlinearity

The multinomial cross-entropy loss is only well-defined if
0 < ŷki < 1, and it is only well-interpretable if

∑
k ŷki = 1. We can

guarantee these two properties by setting

ŷk = softmax
k

(
W~h

)
=

exp(w̄k
~h)∑K

`=1 exp(w̄`
~h)
,

where w̄k is the kth row of the W matrix.
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Sigmoid is a special case of Softmax!

softmax
k

(
W~h

)
=

exp(w̄k
~h)∑K

`=1 exp(w̄`
~h)
.

Notice that, in the 2-class case, the softmax is just exactly a
logistic sigmoid function:

softmax
1

(W~h) =
ew̄1

~h

ew̄1
~h + ew̄2

~h
=

1

1 + e−(w̄1−w̄2)~h
= σ

(
(w̄1 − w̄2)~h

)
so everything that you’ve already learned about the sigmoid applies
equally well here.
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Nonlinearities Summarized

Unit-step and signum nonlinearities, on the hidden layer,
cause the neural net to compute a piece-wise constant
approximation of the target function. Unfortunately, they’re
not differentiable, so they’re not trainable.

Sigmoid and tanh are differentiable approximations of
unit-step and signum, respectively. Unfortunately, they suffer
from a vanishing gradient problem: as the weight matrix gets
larger, the derivatives of sigmoid and tanh go to zero, so error
doesn’t get back-propagated through the nonlinearity any
more.

ReLU has the nice property that the output is a
piece-wise-linear approximation of the target function, instead
of piece-wise constant. It also has no vanishing gradient
problem. Instead, it has the dying-ReLU problem.

Softplus, Leaky ReLU, and PReLU are different solutions to
the dying-ReLU problem.
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Error Metrics Summarized

Use MSE to achieve ŷ → E [~y |~x ]. That’s almost always what
you want.

For a binary classifier with a sigmoid output, BCE loss gives
you the MSE result without the vanishing gradient problem.

For a multi-class classifier with a softmax output, CE loss
gives you the MSE result without the vanishing gradient
problem.

After you’re done training, you can make your cell phone app
more efficient by throwing away the uncertainty:

Replace softmax output nodes with max
Replace logistic output nodes with unit-step
Replace tanh output nodes with signum
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