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@ Review: Power Spectrum and Autocorrelation
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Review: Last time

@ Masking: a pure tone can be heard, in noise, if there is at
least one auditory filter through which N*NLkT’( > threshold.

@ We can calculate the power of a noise signal by using
Parseval's theorem, together with its power spectrum.

=, = 1
2
g2l = g SR = 5 [ RG)d
n=0 k=0

@ The inverse DTFT of the power spectrum is the
autocorrelation )

r[n] = Nx[n] * x[—n]

@ The power spectrum and autocorrelation of noise are,
themselves, random variables. For zero-mean white noise of
length N, their expected values are

E[R[K]] = o°
E [r[n]] = o26[n]
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© Autocorrelation of Filtered Noise



Autocorrelation
[ JeIelelololele}

Filtered Noise

What happens when we filter noise? Suppose that x[n] is
zero-mean Gaussian white noise, and

y[n] = hin]  x[n]

What is y[n]?
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Filtered Noise

yln] = hlnlxx[n] = > h[mlx[n — m]

m=—0o0

@ y[n] is the sum of Gaussians, so y[n] is also Gaussian.

@ y[n] is the sum of zero-mean random variables, so it's also
zero-mean.

e y[n] = h[0]x[n] + other stuff, and
y[n+ 1] = h[1]x[n] + other stuff. So obviously, y[n] and
y[n+ 1] are not uncorrelated. So y[n] is not white noise.

@ What kind of noise is it?
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The variance of y[n]

First, let's find its variance. Since x[n] and x[n + 1] are
uncorrelated, we can write

o0

0}2, = Z h2[m]Var(x[n — m])

m=—0o0

—2 S Fln)

m=—0o0
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The autocorrelation of y[n]

Second, let's find its autocorrelation. Let's define
rx[n] = fx[n] * x[—n]. Then

ryln] = %y[n] * y[—n]
1
= 1 Ocln]  Al]) s (x[=n] + h[—n])

1
- Nx[n] % x[—n] % h[n] * h[—n]
= rux[n] * h[n] * h[—n]
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Expected autocorrelation of y[n]

ryy[n] = rwn] * h[n] * h[—n]

Expectation is linear, and convolution is linear, so

E [ryy[n]] = E [r[n]] * hln] + h[—n]
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Expected autocorrelation of y[n]

x[n] is white noise if and only if its autocorrelation is a delta
function:

E [re[n]] = 026[n]
So
E [ryy[n]] = o% (h[n]  h{—n])

In other words, x[n] contributes only its energy (02). h[n]
contributes the correlation between neighboring samples.
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Example

Here's an example. The white noise signal on the top (x[n]) is
convolved with the bandpass filter in the middle (h[n]) to produce
the green-noise signal on the bottom (y[n]). Notice that y[n] is
random, but correlated.

white noise waveform

0.2+

0.0 4

-0.2 1

TMPpUise TESPOTTSET dU(]iLOly fitter venteredat tkHz T

0.05

0.00

—0.05 ——————gunitory-fitered white Tolse waveform ——— — 7

0.025 4

0.000 +

—0.025 A

T T T T T T T T T
0.0000 0.0025 0.0050 0.0075 00100 0.0125 0.0150 0.0175 0.0200
time (sec)



Autocorrelation
0000000

Colors, anybody?

e Noise with a flat power spectrum (uncorrelated samples) is
called white noise.
@ Noise that has been filtered (correlated samples) is called
colored noise.
o If it's a low-pass filter, we call it pink noise (this is quite
standard).
o If it's a high-pass filter, we could call it blue noise (not so
standard).
o If it's a band-pass filter, we could call it green noise (not at all
standard, but | like it!)
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Power Spectrum of Filtered Noise

So we have ry,[n] = ru[n] * h[n] * h[—n]. What about the power
spectrum?

Ryy(w) = F {ryy[n]}
= F {rw[n] * h[n] = h[—n]}
= Rc(w)|H(w)|?



Spectrum
oeo

Example

Here's an example. The white noise signal on the top (|X[k]|?) is
multiplied by the bandpass filter in the middle (|H[k]|?) to produce
the green-noise signal on the bottom (| Y[K]|?> = |X[k]|?|H[K]|?).

white noise powerspectrum
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Units Conversion

The DTFT version of Parseval's theorem is

Ibzn:xz[n] = 2177/

s

Rux(w)dw

Let's consider converting units to Hertz. Remember that w = 2%:

where F; is the sampling frequency, so dw = %df, and we get that

1 ) 1 [F2 onf
N;X [n]—FS/_ RXX ?s df

Fs/2

So we can use Ry (2%:) as if it were a power spectrum in

continuous time, at least for —% <f< %
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@ Auditory-Filtered White Noise



Dick Lyon, public domain image, 2007. https://en.wikipedia.org/wiki/File:Cochlea_Traveling_Wave.png


https://en.wikipedia.org/wiki/File:Cochlea_Traveling_Wave.png
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Power spectra of auditory filters spaced 1 ERB apart
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The Power of Filtered White Noise

Suppose that h[n] is the auditory filter centered at frequency 7. (in
Hertz), and

y[nl = hln] « x[n]
where x[n] is white noise. What's the power of the signal y[n]?

=g [ ()

Fs/2

Fs/2
-+ R (2”) IH(F)df
F/2

So the expected power is

Fs/2 )
|y -2 f LG

50, OK, what is ["/%) |H(f)dF?
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© What is the Bandwidth of the Auditory Filters?
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Bandwidth
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By Inductiveload, public domain image, https://commons.wikimedia.org/wiki/File:Bandwidth_2.svg


https://commons.wikimedia.org/wiki/File:Bandwidth_2.svg
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Equivalent rectangular bandwidth

Let's make the simplest possible assumption: a rectangular filter,
centered at frequency 7., with bandwidth b:

1 f-2<f<f+?
H(f) =<1 fe—b<—f<f+2

0 otherwise

That's useful, because it makes Parseval's theorem very easy:

Fs/2 2b
/ (F)]df = <> o?
Fs/2 Fs
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Reminder: Fletcher's Model of Masking

Fletcher proposed the following model of hearing in noise:

2]

The human ear pre-processes the audio using a bank of
bandpass filters.

The power of the noise signal, in the bandpass filter centered
at frequency f, is N¢..

The power of the noise+tone is Ng. + T¢.

If there is any band, k, in which fC+ e > threshold, then the
tone is audible. Otherwise, not.



Bandwidth
[ele]e] Tololelelele)

The “Just Noticeable Difference” in Loudness

First, let’s figure out what the threshold is. Play two white noise
signals, x[n] and y[n]. Ask listeners which one is louder.

The "just noticeable difference” is the difference in loudness at
which 75% of listeners can correctly tell you that y[n] is louder
than x[n]:

IND = 10log; (Z y2[n]> — 10logq (Z x2[n]>

It turns out that the JND is very close to 1dB, for casual listening,
for most listeners. So Fletcher's masking criterion becomes:

o If there is any band, /, in which 10log;, <m) > 1dB,
then the tone is audible. Otherwise, not.
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Fletcher's Model, for White Noise

© The human ear pre-processes the audio using a bank of
bandpass filters.

@ The power of the noise signal, in the filter centered at £, is
Ng. = 2bo? | Fs.

© The power of the noise+tone is Nf. + T¢..

© If there is any band in which 10 log;, (%) > 1dB, then

the tone is audible. Otherwise, not.

... next question to solve. What is the power of the tone?
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What is the power of a tone?

A pure tone has the formula

2
x[n] = Acos (won+60), wo= il
No
Its power is calculated by averaging over any integer number of
periods:
1 No—1 2

Ty,

A
= — Z A? cos? (won + 0) = —
No — 2
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Power of a filtered tone

Suppose y[n] = h[n] * x[n]. Then
y[n] = AlH(wp)| cos (won + 8 + ZHg (wo))
And it has the power
o = SR H (o)
If we're using rectangular bandpass filters, then

5 fo—5<fy<fe+3
To=%& f-be_fatr 42

0 otherwise
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Fletcher's Model, for White Noise

The tone is audible if there's some filter centered at f. = f
(specifically, f. — 2 < fy < f. + 2) for which:

2bg? | A2
Ne + T, + &
f.
c F.

Procedure: Set F; and o2 to some comfortable listening level. In
order to find the bandwidth, b, of the auditory filter centered at f,

@ Test a range of different levels of A.

@ Find the minimum value of A at which listeners can report
“tone is present” with 75% accuracy.

© From that, calculate b.
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Equivalent rectangular bandwidth (ERB)

Here are the experimental results: The frequency resolution of your
ear is better at low frequencies! In fact, the dependence is roughly
linear (Glasberg and Moore, 1990):

b~ 0.108f + 24.7

These are often called (approximately) constant-Q filters, because
the quality factor is

f'
=-~0.26
@ b

The dependence of b on f is not quite linear. A more precise
formula is given in (Moore and Glasberg, 1983) as:

f\?2 f
b=6.23 <1ooo> +93.39 <1ooo) 1 28.52
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Equivalent rectangular bandwidth (ERB)

ERB (Hz)

10° 10° 10
Frequency (Hz)

By Dick Lyon, public domain image 2009, https://commons.wikimedia.org/wiki/File:ERB_vs_frequency.svg


https://commons.wikimedia.org/wiki/File:ERB_vs_frequency.svg
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@ Auditory-Filtered Other Noises
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What happens if we start with bandstop noise?

1kHz tone powerspectrum
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The power of bandstop noise

Suppose y[n] is a bandstop noise: say, it's been zeroed out
between f, and f3:

h<|fl<f

E[Ry/()] = {22

otherwise
Parseval's theorem gives us the energy of this noise:

1 N-1 ) 1 Fs/2
N Zy [n]| = F/ Ryy(w)dw
n=0 s

—F/2

Ifh—hHh < % then the power of this noise is almost as large as
the power of a white noise signal.

E
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Bandstop noise power =~ White noise power

1kHz tone waveform
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Auditory-filtered bandstop noise

Now let’s filter y[n] through an auditory filter:
z[n] = y[n] * hln]

where, again, let's assume a rectangular auditory filter, and let's
assume that the whole bandstop region lies inside the auditory
filter, so that

b b
fc—§<f3<f2<fc+§

Then we have

o2 fo—5<|fl<h
E[Rz(f)] = E[Ry(NIH(A? =S 0? H<|fl<f+5
0 otherwise

This is nonzero only in two tiny frequency bands:
fo— 2 <|fl<fh and f3 < |f| <+ 2.
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Auditory-filtered bandstop noise

bandstop noise powerspectrum
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Tiny power spectrum = tiny waveform energy

bandstop noise waveform
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@ What is the Shape of the Auditory Filters?



Shape
©000000000000

LLowpass noise

Patterson (1974) measured the shape of the auditory filter using
lowpass noise, i.e., noise with the following spectrum:

R (f)— 02 —f1<f<f1
o 10 otherwise
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Lowpass-filtered noise
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By Dave Dunford, public domain image 1010, https://en.wikipedia.org/wiki/File:0ff_F_listening.svg
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LLowpass noise

Patterson (1974) measured the shape of the auditory filter using
lowpass noise, i.e., noise with the following spectrum:

R (f)— 02 —f1<f<f1
XX )0  otherwise

The power of a lowpass filtered noise, as heard through an auditory
filter H(f) centered at f, is

1 Fs/2 0_2 fi
N(f., f) = / Ruoc(F)|H(F)[?df = / |H(f)[df
Fs —F5/2 Fs —f
Turning that around, we get a formula for |[H(f)|? in terms of the
power, N(f., f1), that gets passed through the filter:

Fs \ dN(fe, i)
2 9
R = (5)
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The power of lowpass noise

Suppose that we have a tone at fy = f., and we raise its amplitude,
A, until it's just barely audible. The relationship between the tone
power and the noise power, at the JND amplitude, is

N(fe,fi) +05A%Y _ 0.5A2
10 |Og10 < N(fc’ fl) =1 = N(fc7 f]_) = m

So if we measure the minimum tone amplitude that is audible, as a
function of f. and fi, then we get

1.93F$) dA(f, f1)

R = (2557 ) Al

g

...so the shape of the auditory filter is the derivative, with respect
to cutoff frequency, of the smallest audible power of the tone at .
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Symmetric filters

Using the method on the previous slide, Patterson showed that the
auditory filter shape varies somewhat depending on loudness, but
the auditory filter centered at f is pretty well approximated as

1
(B +(F = )"

()P =
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What is the inverse transform of a symmetric filter?

1
(B + (T = RP)*

Patterson suggested analyzing this as

[H(F)? =

1

HOP = e |

27 = 1G(F)I7

where

1
1G(F)]* = m
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What is the inverse transform of |G(f)|?

First, let's just consider the filter
1
AP =55
The only causal filter with this frequency response is the basic

second-order resonator filter,

_ 27
-~ 2n(b—j(f - fo))

G(f)

...which is the Fourier transform (G(f) = [ g(t)e />t dt) of

g(t) =

2re—2m(b—jh)t 5
0 t<0
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What does g(t) look like?

The real part of g(t) is e 2™t cos(27fyt)u(t), which is shown here:

1

0.5

AN

By LM13700, CC-SA3.0, https://commons.wikimedia.org/wiki/File:DampedSine.png


https://commons.wikimedia.org/wiki/File:DampedSine.png
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What does |G(f)| look like?

|G(f)| looks like this (the frequency response of a standard
second-order resonator filter). It's closest to the olive-colored one:
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From G(f) to H(f)

Patterson suggested analyzing H(f) as

1

HOF = o i = *

i~ 1G(F)?
which means that

h(t) = g(t) x g(t) = g(t) x g(t)

So what is g(t) * g(t)?
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The self-convolution of an exponential is a gamma

Let's first figure out what is g(t) * g(t), where
g(t) =e u(t), a=2n(b—jh)
We can write it as
t
g(t) x g(t) = / e e Aty
0
t
— eat/ efa‘reJra‘rdT
0
= te tu(t)
Repeating that process, we get

g(t)  g(t) x g(t) x g(t) o e u(t)
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The Gammatone Filter

Patterson proposed that, since h(t) is obviously real-valued, we
should model it as

0= (s5=a) * (m)

Whose inverse transform is a filter called a gammatone filter
(because it looks like a gamma function, from statistics, multiplied
by a tone):

h(t) o t" T2t cos(2nfyt)u(t)

where, in this case, the order of the gammatone is n = 4.
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The Gammatone Filter

The top frame is a white noise, x[n]. The middle frame is a
gammatone filter at f. = 1000Hz, with a bandwidth of b = 128Hz.
The bottom frame is the filtered noise y[n].
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Summary

@ Autocorrelation of filtered noise:
ryy[n] = r[n] * h[n] * h[—n]
@ Power spectrum of filtered noise:

Ryy(w) = Rue(w)|H(w)?
o Auditory-filtered white noise:

F./2
Ely T [n]] iy GG

@ Bandwidth of the auditory filters:

f‘
= - ~0.26
@ b

@ Shape of the auditory filters:

1
HOF = o r—apy

h(t) o< t"te 2™t cos(27fyt)u(t)
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