Outline	Review	Symmetric	Images	PCA	Gram	Summary

Lecture 2: Principal Components and Eigenfaces

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2020

00000 00000	000 000	000 00000	000000 000000	

- Outline of today's lecture
- 2 Review: Gaussians and Eigenvectors
- 3 Eigenvectors of symmetric matrices
- Images as signals
- 5 Today's key point: Principal components = Eigenfaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

6 How to make it work: Gram matrix, SVD

7 Summary

Outline	Review	Symmetric	Images	PCA	Gram	Summary
	00000000	00000000	000000	000000000	000000000	0
Outlin	ie					

① Outline of today's lecture

- 2 Review: Gaussians and Eigenvectors
- 3 Eigenvectors of symmetric matrices
- Images as signals
- **5** Today's key point: Principal components = Eigenfaces

6 How to make it work: Gram matrix, SVD

7 Summary

 Outline
 Review
 Symmetric
 Images
 PCA
 Gram
 Summary

 •
 00000000
 0000000
 00000000
 00000000
 000000000
 000000000
 0

Outline of today's lecture

O MP 1

- Review: Gaussians and Eigenvectors
- Sigenvectors of a symmetric matrix
- Images as signals
- Principal components = eigenfaces
- **o** How to make it work: Gram matrix and SVD

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline	Review	Symmetric	Images	PCA	Gram	Summary
0	00000000	00000000	000000	000000000	000000000	O
Outlin	ie					

- 1 Outline of today's lecture
- 2 Review: Gaussians and Eigenvectors
- 3 Eigenvectors of symmetric matrices
- Images as signals
- 5 Today's key point: Principal components = Eigenfaces

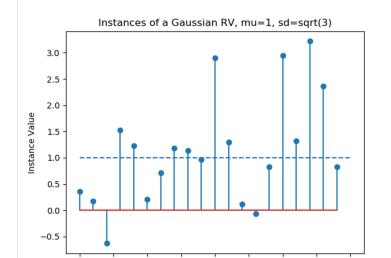
6 How to make it work: Gram matrix, SVD

7 Summary

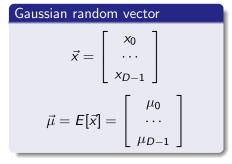
 Outline
 Review •00000000
 Symmetric 00000000
 Images 00000000
 PCA 000000000
 Gram 0000000000
 Summary 0

 Scalar Gaussian random variables

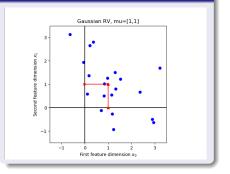
$$\mu = E[X], \quad \sigma^2 = E[(X - \mu)^2]$$



Outline	Review	Symmetric	Images	PCA	Gram	Summary
0	o●oooooo	00000000	000000	000000000	000000000	O



Example: Instances of a Gaussian random vector



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline	Review	Symmetric	Images	PCA	Gram	Summary
	0000000	00000000	000000	000000000	000000000	

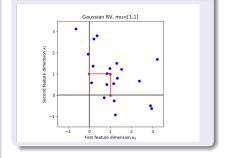
Gaussian random vector

$$\Sigma = \begin{bmatrix} \sigma_0^2 & \rho_{01} & \ddots \\ \rho_{10} & \ddots & \rho_{D-2,D-1} \\ \ddots & \rho_{D-1,D-2} & \sigma_{D-1}^2 \end{bmatrix}$$

where

$$\rho_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)]$$
$$\sigma_i^2 = E[(x_i - \mu_i)^2]$$

Example: Instances of a Gaussian random vector



 Outline
 Review
 Symmetric
 Images

 0
 00000000
 0000000
 0000000

PCA 000000000 Gram 00000000 Summary

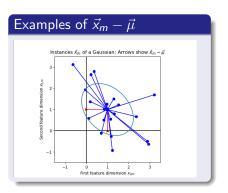
Sample Mean, Sample Covariance

In the real world, we don't know $\vec{\mu}$ and Σ ! If we have *M* instances \vec{x}_m of the Gaussian, we can estimate

$$\vec{\mu} = \frac{1}{M} \sum_{m=0}^{M-1} \vec{x}_m$$

$$\Sigma = rac{1}{M-1} \sum_{m=0}^{M-1} (ec{x}_m - ec{\mu}) (ec{x}_m - ec{\mu})^T$$

Sample mean and sample covariance are not the same as real mean and real covariance, but we'll use the same letters ($\vec{\mu}$ and Σ) unless the problem requires us to distinguish.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Outline
 Review
 Symmetric
 Images
 PCA
 Gram
 Summary

 Owner:
 Eigenvalues and eigenvectors
 Owner:
 Owner:

The eigenvectors of a $D \times D$ square matrix, A, are the vectors \vec{v} such that

$$A\vec{v} = \lambda\vec{v} \tag{1}$$

The scalar, λ , is called the eigenvalue. It's only possible for Eq. (1) to have a solution if

$$|A - \lambda I| = 0 \tag{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Outline
 Review
 Symmetric
 Images
 PCA
 Gram
 Summary

 0
 000000000
 00000000
 00000000
 000000000
 000000000
 000000000
 0

 Left and right eigenvectors

Weve been working with right eigenvectors and right eigenvalues:

$$A\vec{v}_d = \lambda_d \vec{v}_d$$

There may also be left eigenvectors, which are row vectors \vec{u}_d and corresponding left eigenvalues κ_d :

$$\vec{u}_d^T A = \kappa_d \vec{u}_d^T$$

Outline Review Symmetric Images PCA Gram Summary 000000000 0000000 0000000 00000000 000000000 000000000 000000000 Eigenvectors on both sides of the matrix

You can do an interesting thing if you multiply the matrix by its eigenvectors both before and after:

$$\vec{u}_i^T(A\vec{v}_j) = \vec{u}_i^T(\lambda_j \vec{v}_j) = \lambda_j \vec{u}_i^T \vec{v}_j$$

. . . but. . .

$$(\vec{u}_i^T A)\vec{v}_j = (\kappa_i \vec{u}_i^T)\vec{v}_j = \kappa_i \vec{u}_i^T \vec{v}_j$$

There are only two ways that both of these things can be true. Either

$$\kappa_i = \lambda_j$$
 or $\vec{u}_i^T \vec{v}_j = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline Review Symmetric Images PCA Gram Summary 0 0000000 0000000 0000000 00000000 00000000 0 Left and right eigenvectors must be paired!!

There are only two ways that both of these things can be true. Either

$$\kappa_i = \lambda_j$$
 or $\vec{u}_i^T \vec{v}_j = 0$

Remember that eigenvalues solve $|A - \lambda_d I| = 0$. In almost all cases, the solutions are all distinct (A has distinct eigenvalues), i.e., $\lambda_i \neq \lambda_j$ for $i \neq j$. That means there is **at most one** λ_i that can equal each κ_i :

$$\begin{cases} i \neq j & \vec{u}_i^T \vec{v}_j = 0\\ i = j & \kappa_i = \lambda_i \end{cases}$$

Outline	Review	Symmetric	Images	PCA	Gram	Summary
O	00000000	00000000	000000	000000000	000000000	0
Outlin	е					

- 1 Outline of today's lecture
- 2 Review: Gaussians and Eigenvectors
- 3 Eigenvectors of symmetric matrices
- Images as signals
- **5** Today's key point: Principal components = Eigenfaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

6 How to make it work: Gram matrix, SVD

7 Summary

If A is symmetric with D eigenvectors, and D distinct eigenvalues, then

$$VV^{T} = V^{T}V = I$$
$$V^{T}AV = \Lambda$$
$$A = V\Lambda V^{T}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline Review Symmetric Images PCA Gram Summary Symmetric matrices: left=right

If A is symmetric $(A = A^T)$, then the left and right eigenvectors and eigenvalues are the same, because

$$\lambda_i \vec{u}_i^T = \vec{u}_i^T A = (A^T \vec{u}_i)^T = (A \vec{u}_i)^T$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

... and that last term is equal to $\lambda_i \vec{u}_i^T$ if and only if $\vec{u}_i = \vec{v}_i$.

Let's combine the following facts:

• $\vec{u}_i^T \vec{v}_j = 0$ for $i \neq j$ — any square matrix with distinct eigenvalues

•
$$\vec{u}_i = \vec{v}_i$$
 — symmetric matrix

• $\vec{v}_i^T \vec{v}_i = 1$ — standard normalization of eigenvectors for any matrix (this is what $\|\vec{v}_i\| = 1$ means).

Putting it all together, we get that

$$\vec{v}_i^T \vec{v}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

 Outline
 Review
 Symmetric
 Images
 PCA
 Gram
 Summary

 0
 00000000
 00000000
 00000000
 000000000
 000000000
 0

 The eigenvector matrix

So if A is symmetric with distinct eigenvalues, then its eigenvectors are orthonormal:

$$ec{v}_i^T ec{v}_j = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$$

We can write this as

$$V^T V = I$$

where

$$V = [\vec{v}_0, \ldots, \vec{v}_{D-1}]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 Outline
 Review
 Symmetric
 Images
 PCA
 Gram
 Summary

 0
 00000000
 00000000
 00000000
 00000000
 00000000
 0

The eigenvector matrix is orthonormal

$$V^T V = I$$

... and it also turns out that

$$VV^T = I$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proof: $VV^T = VIV^T = V(V^TV)V^T = (VV^T)^2$, but the only matrix that satisfies $VV^T = (VV^T)^2$ is $VV^T = I$.

So now, suppose A is symmetric:

$$\vec{v}_i^T A \vec{v}_j = \vec{v}_i^T (\lambda_j \vec{v}_j) = \lambda_j \vec{v}_i^T \vec{v}_j = \begin{cases} \lambda_j, & i = j \\ 0, & i \neq j \end{cases}$$

In other words, if a symmetric matrix has D eigenvectors with distinct eigenvalues, then its eigenvectors orthogonalize A:

$$V^{T}AV = \Lambda$$
$$\Lambda = \begin{bmatrix} \lambda_{0} & 0 & 0\\ 0 & \dots & 0\\ 0 & 0 & \lambda_{D-1} \end{bmatrix}$$

One more thing. Notice that

$$A = VV^T A VV^T = V \Lambda V^T$$

The last term is

$$\begin{bmatrix} \vec{v}_0, \dots, \vec{v}_{D-1} \end{bmatrix} \begin{bmatrix} \lambda_0 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_{D-1} \end{bmatrix} \begin{bmatrix} \vec{v}_0^T \\ \vdots \\ \vec{v}_{D-1}^T \end{bmatrix} = \sum_{d=0}^{D-1} \lambda_d \vec{v}_d \vec{v}_d^T$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 Outline
 Review
 Symmetric
 Images
 PCA
 Gram
 Summary

 Summary:
 properties of symmetric matrices

If A is symmetric with D eigenvectors, and D distinct eigenvalues, then

 $A = V \wedge V^{T}$ $\wedge = V^{T} A V$ $V V^{T} = V^{T} V = I$

Outline	Review 00000000	Symmetric 00000000	Images 000000	PCA 000000000	Gram 000000000	Summary
Outlin						

- 1 Outline of today's lecture
- 2 Review: Gaussians and Eigenvectors
- 3 Eigenvectors of symmetric matrices
- Images as signals
- 5 Today's key point: Principal components = Eigenfaces

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

6 How to make it work: Gram matrix, SVD

7 Summary

Outline Review Symmetric Images PCA Gram Summary •••••••• •••••• ••••• ••••• •••• •••• •••• •••• •••• •••• •••

- An RGB image is a signal in three dimensions: f[i, j, k] = intensity of the signal in the ith row, jth column, and kth color.
- f[i, j, k], for each (i, j, k), is either stored as an integer or a floating point number:
 - Floating point: usually x ∈ [0, 1], so x = 0 means dark, x = 1 means bright.

- Integer: usually $x \in \{0, \dots, 255\}$, so x = 0 means dark, x = 255 means bright.
- The three color planes are usually:
 - k = 0: Red
 - *k* = 1: Blue
 - *k* = 2: Green

Outline Review Symmetric Images PCA Gram Summary 0 00000000 0000000 00000000 000000000 000000000 000000000 How do you treat an image as a vectors?

A vectorized RGB image is created by just concatenating all of the colors, for all of the columns, for all of the rows. So if the $m^{\rm th}$ image, $f_m[i, j, k]$, is $R \approx 200$ rows, $C \approx 400$ columns, and K = 3 colors, then we set

$$\vec{x}_m = [x_{m0}, \ldots, x_{m,D-1}]^T$$

where

$$x_{m,(iC+j)K+k} = f_m[i,j,k]$$

which has a total dimension of

$$D = RCK \approx 200 \times 400 \times 3 = 240,000$$

 Outline
 Review
 Symmetric
 Images
 PCA
 Gram
 Summary

 00000000
 00000000
 00000000
 000000000
 000000000
 000000000
 000000000

 How do you classify an image?

Suppose we have a test image, \vec{x}_{test} . We want to figure out: who is this person?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline	Review	Symmetric	Images	PCA	Gram	Summary
0	00000000	00000000	000●00	000000000	000000000	0
Traini	ng Data?					

In order to classify the test image, we need some training data. For example, suppose we have the following four images in our training data. Each image, \vec{x}_m , comes with a label, y_m , which is just a string giving the name of the individual.

Training	Training	Training	Training
Datum:	Datum	Datum	Datum
y ₀ =Colin	y ₁ =Gloria	y ₂ =Megawati	y ₃ =Tony
Powell:	Arroyo:	Sukarnoputri:	Blair:
$\vec{x_0} =$	$\vec{x}_1 =$	$\vec{x}_2 =$	

 Outline
 Review
 Symmetric
 Images
 PCA
 Gram
 Summary

 Nearest Neighbors Classifier

A "nearest neighbors classifier" makes the following guess: the test vector is an image of the same person as the closest training vector:

$$\hat{y}_{\text{test}} = y_{m^*}, \quad m^* = \operatorname*{argmin}_{m=0}^{M-1} \|\vec{x}_m - \vec{x}_{\text{test}}\|$$

where "closest," here, means Euclidean distance:

$$\|\vec{x}_m - \vec{x}_{\text{test}}\| = \sqrt{\sum_{d=0}^{D-1} (x_{md} - x_{\text{test},d})^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- The problem with nearest-neighbors is that subtracting one image from another, pixel-by-pixel, results in a measurement that is dominated by noise.
- We need a better measurement.
- The solution is to find a signal representation, \vec{y}_m , such that \vec{y}_m summarizes the way in which \vec{x}_m differs from other faces.
- If we find \vec{y}_m using principal components analysis, then \vec{y}_m is called an "eigenface" representation.

Outline	Review	Symmetric 00000000	Images 000000	PCA	Gram 000000000	Summary
Outlin						

- 1 Outline of today's lecture
- 2 Review: Gaussians and Eigenvectors
- 3 Eigenvectors of symmetric matrices
- Images as signals
- 5 Today's key point: Principal components = Eigenfaces

6 How to make it work: Gram matrix, SVD

7 Summary

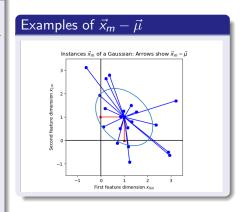
Outline	Review	Symmetric	Images	PCA	Gram	Summary
				•00000000		

Sample covariance

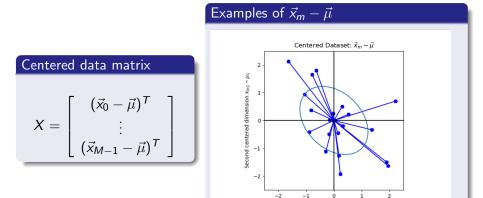
$$egin{split} \Sigma &= rac{1}{M-1} \sum_{m=0}^{M-1} (ec{x}_m - ec{\mu}) (ec{x}_m - ec{\mu})^T \ &= rac{1}{M-1} X^T X \end{split}$$

 \dots where X is the centered data matrix,

$$X = \begin{bmatrix} (\vec{x_0} - \vec{\mu})^T \\ \vdots \\ (\vec{x}_{M-1} - \vec{\mu})^T \end{bmatrix}$$



Outline	Review	Symmetric	Images	PCA	Gram	Summary
				00000000		



(ロ) (型) (E) (E) (E) (O)

First centered dimension $x_{m0} - \mu_0$

Outline	Review	Symmetric	Images	PCA	Gram	Summary
				00000000		

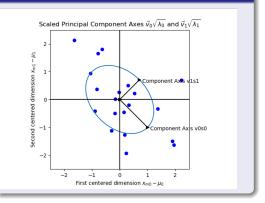
Principal component axes

 $X^T X$ is symmetric! Therefore,

 $X^T X = V \Lambda V^T$

 $V = [\vec{v}_0, \dots, \vec{v}_{D-1}]$, the eigenvectors of $X^T X$, are called the principal component axes, or principal component directions.

Principal component axes



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Principal components

Symmetric

Review

Outline

Remember that the eigenvectors of a matrix diagonalize it. So if V are the eigenvectors of $X^T X$, then

PCA

000000000

$$V^T X^T X V = \Lambda$$

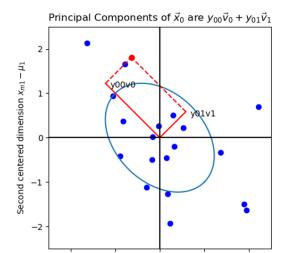
Let's write Y = XV, and $Y^T = V^T X^T$. In other words,

$$\vec{y}_m = V^T (\vec{x}_m - \vec{\mu})$$

 $\vec{y}_m = [y_{m0}, \dots, y_{m,D-1}]^T$ is the vector of principal components of \vec{x}_m . Expanding the formula $Y^T Y = \Lambda$, we discover that PCA orthogonalizes the dataset:

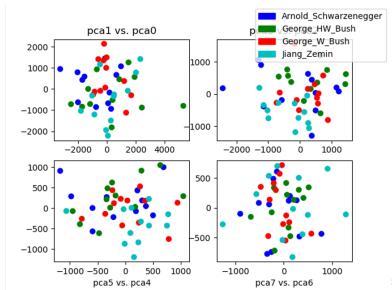
$$\sum_{m=0}^{M-1} y_{im} y_{jm} = \begin{cases} \lambda_i & i = j \\ 0 & i \neq j \end{cases}$$

$$ec{y}_m = V^T (ec{x}_m - ec{\mu})$$



🗄 ୬୯୯

OutlineReview
occococoSymmetric
occocococoImages
occococoPCA
occocococoGram
occocococoSummar
occocococoPrincipal components with larger eigenvalues have more
energy



The total dataset energy is

$$\sum_{m=0}^{M-1} y_{mi}^2 = \lambda_i$$

But remember that $V^T V = I$. Therefore, the total dataset energy is the same, whether you calculate it in the original image domain, or in the PCA domain:

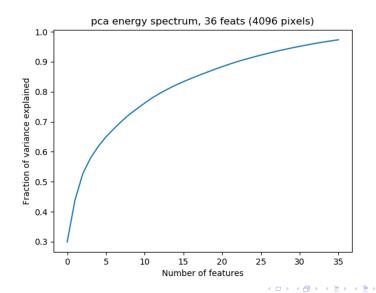
$$\sum_{m=0}^{M-1} \sum_{d=0}^{D-1} (x_{md} - \mu_d)^2 = \sum_{m=0}^{M-1} \sum_{i=0}^{D-1} y_{mi}^2 = \sum_{i=0}^{D-1} \lambda_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

The "energy spectrum" is energy as a function of basis vector index. There are a few ways we could define it, but one useful definition is:

$$E[k] = \frac{\sum_{m=0}^{M-1} \sum_{i=0}^{k-1} y_{mi}^2}{\sum_{m=0}^{M-1} \sum_{i=0}^{D-1} y_{mi}^2}$$
$$= \frac{\sum_{i=0}^{k-1} \lambda_i}{\sum_{i=0}^{D-1} \lambda_i}$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



ヨー のへで

Outline	Review	Symmetric	Images	PCA	Gram	Summary
0	00000000	00000000	000000	000000000	000000000	O
Outlir	ne					

- Outline of today's lecture
- 2 Review: Gaussians and Eigenvectors
- 3 Eigenvectors of symmetric matrices
- Images as signals
- 5 Today's key point: Principal components = Eigenfaces

6 How to make it work: Gram matrix, SVD

7 Summary

Outline	Review	Symmetric	Images	PCA	Gram	Summary
0	00000000	00000000	000000	000000000	●00000000	O

Gram matrix

- $X^T X$ is usually called the sum-of-squares matrix. $\frac{1}{M-1}X^T X$ is the sample covariance.
- G = XX^T is called the gram matrix. Its (i, j)th element is the dot product between the ith and jth data samples:

$$g_{ij} = (\vec{x}_i - \vec{\mu})^T (\vec{x}_j - \vec{\mu})$$

Gram matrix $g_{01} = (\vec{x}_0 - \vec{\mu})^T (\vec{x}_1 - \vec{\mu})$ Gram Matrix $q_{01} = (\vec{x}_0 - \vec{\mu})^T (\vec{x}_1 - \vec{\mu})$ Second centered dimension $x_{m1} - \mu_1$ $^{-1}$ -2 _2 -1 First centered dimension xm0 - U

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline	Review	Symmetric	Images	PCA	Gram	Summary
0	00000000	00000000	000000	000000000	○●○○○○○○○	O

Eigenvectors of the Gram matrix

 XX^{T} is also symmetric! So it has orthonormal eigenvectors:

 $XX^T = U\Lambda U^T$

$$UU^T = U^T U = I$$

 $X^T X$ and XX^T have the same eigenvalues (Λ), but different eigenvectors (V vs. U).

Gram matrix $g_{01} = (\vec{x}_0 - \vec{\mu})^T (\vec{x}_1 - \vec{\mu})$ Gram Matrix $g_{01} = (\vec{x}_0 - \vec{\mu})^T (\vec{x}_1 - \vec{\mu})$ Second centered dimension $x_{m1} - \mu_1$ 1 $^{-1}$ -2 _2 -1 First centered dimension $x_{m0} - \mu_0$

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Why the Gram matrix is useful:

Symmetric

Review

Outline

Suppose (as in MP1) that $D \sim 240000$ pixels per image, but $M \sim 240$ different images. Then, in order to perform this eigenvalue analysis:

$$X^T X = V \Lambda V^T$$

... requires factoring a 240000th-order polynomial $(|X^T X - \lambda I| = 0)$, then solving 240000 simultaneous linear equations in 240000 unknowns to find each eigenvector $(X^T X \vec{v_d} = \lambda_d \vec{v_d})$. If you try doing that using np.linalg.eig, your PC will be running all day. On the other hand,

$$XX^T = U\Lambda U^T$$

requires only 240 equations in 240 unknowns. Educated experts agree: $240^2 \ll 240000^2$.

Gram

- Both $X^T X$ and $X X^T$ are positive semi-definite, meaning that their eigenvalues are non-negative, $\lambda_d \ge 0$.
- The singular values of X are defined to be the square roots of the eigenvalues of X^TX and XX^T:

$$S = \begin{bmatrix} s_0 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & s_{D-1} \end{bmatrix}, \quad \Lambda = S^2 = \begin{bmatrix} s_0^2 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & s_{D-1}^2 \end{bmatrix}$$

Gram 000000000 S

$$X^{T}X = V\Lambda V^{T} = VSSV^{T}$$
$$XX^{T} = U\Lambda U^{T} = USSU^{T}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

æ.

$$X^{T}X = VSSV^{T} = VSISV^{T} = VSU^{T}USV^{T} = (USV^{T})^{T}(USV^{T})$$
$$XX^{T} = USSU^{T} = USISU^{T} = USV^{T}VSU^{T} = (USV^{T})(USV^{T})^{T}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline Review Symmetric Images PCA Gram Summary Singular Value Decomposition Summary Summary

Any matrix, X, can be written as $X = USV^T$.

•
$$U = [\vec{u}_0, ..., \vec{u}_{M-1}]$$
 are the eigenvectors of XX^T .
• $V = [\vec{v}_0, ..., \vec{v}_{D-1}]$ are the eigenvectors of X^TX .
• $S = \begin{bmatrix} s_0 & 0 & 0 & 0 \\ 0 & ... & 0 & 0 & 0 \\ 0 & 0 & s_{\min(D,M)-1} & 0 & 0 \end{bmatrix}$ are the singular values.

S has some all-zero columns if M > D, or all-zero rows if M < D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Outline Review Symmetric Images PCA Gram Summary What np.linalg.svd does What np.linalg.svd does Vertice Vertice

First, np.linalg.svd decides whether it wants to find the eigenvectors of $X^T X$ or $X X^T$: it just checks to see whether M > D or vice versa. If it discovers that M < D, then:

- Compute $XX^T = U\Lambda U^T$, and $S = \sqrt{\Lambda}$. Now we have U and S, we just need to find V.
- Since $X^T = VSU^T$, we can get V by just multiplying:

$$\tilde{V} = X^T U$$

... where $\tilde{V} = VS$ is exactly equal to V, but with each column scaled by a different singular value. So we just need to normalize:

$$\|\vec{v}_i\| = 1, \quad v_{i0} > 0$$

- Direct eigenvector analysis of $X^T X$ gives the right answer, but takes a very long time. When I tried this, it timed out the autograder.
- Applying np.linalg.svd to X should give the right answer, very fast. I haven't tried it this year, but it worked on last year's dataset.
- What I tried, this year, is the gram matrix method: Apply np.linalg.eig to get U from XX^T . Multiply $\tilde{V} = X^T U$, then normalize the columns to get V.

Outline	Review	Symmetric	Images	PCA 000000000	Gram	Summary			
	00000000	00000000	000000	000000000	000000000				
A									
Outlin	าย								

- 1 Outline of today's lecture
- 2 Review: Gaussians and Eigenvectors
- 3 Eigenvectors of symmetric matrices
- Images as signals
- 5 Today's key point: Principal components = Eigenfaces

6 How to make it work: Gram matrix, SVD

O Summary

Outline	Review	Symmetric	Images	PCA	Gram	Summary	
0	00000000	00000000	000000	000000000	000000000	•	
Summary							

• Symmetric matrices:

$$A = V \Lambda V^{T}, \quad V^{T} A V = \Lambda, \quad V^{T} V = V V^{T} = I$$

Centered dataset:

$$X = \begin{bmatrix} (\vec{x}_0 - \vec{\mu})^T \\ \vdots \\ (\vec{x}_{M-1} - \vec{\mu})^T \end{bmatrix}$$

• Singular value decomposition:

$$X = USV^T$$

where V are eigenvectors of the sum-of-squares matrix, U are eigenvectors of the gram matrix, and $\Lambda = S^2$ are their shared eigenvalues.