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Scalar Gaussian random variables

µ = E [X ], σ2 = E [(X − µ)2]



Outline Review Symmetric Images PCA Gram Summary

Gaussian random vector

~x =

 x0
· · ·
xD−1


~µ = E [~x ] =

 µ0
· · ·
µD−1



Example: Instances of a Gaussian
random vector
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Gaussian random vector

Σ =


σ20 ρ01

. . .

ρ10
. . . ρD−2,D−1

. . . ρD−1,D−2 σ2D−1


where

ρij = E [(xi − µi )(xj − µj)]

σ2i = E [(xi − µi )2]

Example: Instances of a
Gaussian random vector
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Sample Mean, Sample Covariance

In the real world, we don’t know ~µ
and Σ! If we have M instances ~xm
of the Gaussian, we can estimate

~µ =
1

M

M−1∑
m=0

~xm

Σ =
1

M − 1

M−1∑
m=0

(~xm − ~µ)(~xm − ~µ)T

Sample mean and sample
covariance are not the same as real
mean and real covariance, but we’ll
use the same letters (~µ and Σ)
unless the problem requires us to
distinguish.

Examples of ~xm − ~µ
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Review: Eigenvalues and eigenvectors

The eigenvectors of a D × D square matrix, A, are the vectors ~v
such that

A~v = λ~v (1)

The scalar, λ, is called the eigenvalue. It’s only possible for Eq. (1)
to have a solution if

|A− λI | = 0 (2)
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Left and right eigenvectors

Weve been working with right eigenvectors and right eigenvalues:

A~vd = λd~vd

There may also be left eigenvectors, which are row vectors ~ud and
corresponding left eigenvalues κd :

~uTd A = κd~u
T
d
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Eigenvectors on both sides of the matrix

You can do an interesting thing if you multiply the matrix by its
eigenvectors both before and after:

~uTi (A~vj) = ~uTi (λj~vj) = λj~u
T
i ~vj

. . . but. . .
(~uTi A)~vj = (κi ~u

T
i )~vj = κi ~u

T
i ~vj

There are only two ways that both of these things can be true.
Either

κi = λj or ~uTi ~vj = 0
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Left and right eigenvectors must be paired!!

There are only two ways that both of these things can be true.
Either

κi = λj or ~uTi ~vj = 0

Remember that eigenvalues solve |A− λd I | = 0. In almost all
cases, the solutions are all distinct (A has distinct eigenvalues),
i.e., λi 6= λj for i 6= j . That means there is at most one λi that
can equal each κi : {

i 6= j ~uTi ~vj = 0

i = j κi = λi
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Properties of symmetric matrices

If A is symmetric with D eigenvectors, and D distinct eigenvalues,
then

VV T = V TV = I

V TAV = Λ

A = VΛV T
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Symmetric matrices: left=right

If A is symmetric (A = AT ), then the left and right eigenvectors
and eigenvalues are the same, because

λi ~u
T
i = ~uTi A = (AT ~ui )

T = (A~ui )
T

. . . and that last term is equal to λi ~u
T
i if and only if ~ui = ~vi .
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Symmetric matrices: eigenvectors are orthonormal

Let’s combine the following facts:

~uTi ~vj = 0 for i 6= j — any square matrix with distinct
eigenvalues

~ui = ~vi — symmetric matrix

~vTi ~vi = 1 — standard normalization of eigenvectors for any
matrix (this is what ‖~vi‖ = 1 means).

Putting it all together, we get that

~vTi ~vj =

{
1 i = j

0 i 6= j



Outline Review Symmetric Images PCA Gram Summary

The eigenvector matrix

So if A is symmetric with distinct eigenvalues, then its eigenvectors
are orthonormal:

~vTi ~vj =

{
1 i = j

0 i 6= j

We can write this as
V TV = I

where
V = [~v0, . . . , ~vD−1]
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The eigenvector matrix is orthonormal

V TV = I

. . . and it also turns out that

VV T = I

Proof: VV T = VIV T = V (V TV )V T = (VV T )2, but the only
matrix that satisfies VV T = (VV T )2 is VV T = I .
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Eigenvectors orthogonalize a symmetric matrix

So now, suppose A is symmetric:

~vTi A~vj = ~vTi (λj~vj) = λj~v
T
i ~vj =

{
λj , i = j

0, i 6= j

In other words, if a symmetric matrix has D eigenvectors with
distinct eigenvalues, then its eigenvectors orthogonalize A:

V TAV = Λ

Λ =

 λ0 0 0
0 . . . 0
0 0 λD−1


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A symmetric matrix is the weighted sum of its eigenvectors:

One more thing. Notice that

A = VV TAVV T = VΛV T

The last term is

[~v0, . . . , ~vD−1]

 λ0 0 0
0 . . . 0
0 0 λD−1


 ~vT0

...
~vTD−1

 =
D−1∑
d=0

λd~vd~v
T
d
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Summary: properties of symmetric matrices

If A is symmetric with D eigenvectors, and D distinct eigenvalues,
then

A = VΛV T

Λ = V TAV

VV T = V TV = I
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How do you treat an image as a signal?

An RGB image is a signal in three dimensions: f [i , j , k] =
intensity of the signal in the i th row, j th column, and kth color.

f [i , j , k], for each (i , j , k), is either stored as an integer or a
floating point number:

Floating point: usually x ∈ [0, 1], so x = 0 means dark, x = 1
means bright.
Integer: usually x ∈ {0, . . . , 255}, so x = 0 means dark,
x = 255 means bright.

The three color planes are usually:

k = 0: Red
k = 1: Blue
k = 2: Green
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How do you treat an image as a vectors?

A vectorized RGB image is created by just concatenating all of the
colors, for all of the columns, for all of the rows. So if the mth

image, fm[i , j , k], is R ≈ 200 rows, C ≈ 400 columns, and K = 3
colors, then we set

~xm = [xm0, . . . , xm,D−1]T

where
xm,(iC+j)K+k = fm[i , j , k]

which has a total dimension of

D = RCK ≈ 200× 400× 3 = 240, 000
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How do you classify an image?

Suppose we have a test image, ~xtest. We want to figure out: who
is this person?

Test Datum ~xtest:
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Training Data?

In order to classify the test image, we need some training data. For
example, suppose we have the following four images in our training
data. Each image, ~xm, comes with a label, ym, which is just a
string giving the name of the individual.

Training
Datum:
y0 =Colin
Powell:

~x0 =

Training
Datum
y1 =Gloria
Arroyo:

~x1 =

Training
Datum
y2 =Megawati
Sukarnoputri:

~x2 =

Training
Datum
y3 =Tony
Blair:

~x3 =
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Nearest Neighbors Classifier

A “nearest neighbors classifier” makes the following guess: the test
vector is an image of the same person as the closest training vector:

ŷtest = ym∗ , m∗ =
M−1

argmin
m=0

‖~xm − ~xtest‖

where “closest,” here, means Euclidean distance:

‖~xm − ~xtest‖ =

√√√√D−1∑
d=0

(xmd − xtest,d)2



Outline Review Symmetric Images PCA Gram Summary

Improved Nearest Neighbors: Eigenface

The problem with nearest-neighbors is that subtracting one
image from another, pixel-by-pixel, results in a measurement
that is dominated by noise.

We need a better measurement.

The solution is to find a signal representation, ~ym, such that
~ym summarizes the way in which ~xm differs from other faces.

If we find ~ym using principal components analysis, then ~ym is
called an “eigenface” representation.
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Sample covariance

Σ =
1

M − 1

M−1∑
m=0

(~xm − ~µ)(~xm − ~µ)T

=
1

M − 1
XTX

. . . where X is the centered data
matrix,

X =

 (~x0 − ~µ)T

...
(~xM−1 − ~µ)T



Examples of ~xm − ~µ
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Centered data matrix

X =

 (~x0 − ~µ)T

...
(~xM−1 − ~µ)T



Examples of ~xm − ~µ
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Principal component axes

XTX is symmetric!
Therefore,

XTX = VΛV T

V = [~v0, . . . , ~vD−1], the
eigenvectors of XTX , are
called the principal
component axes, or
principal component
directions.

Principal component axes
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Principal components

Remember that the eigenvectors of a matrix diagonalize it. So if V
are the eigenvectors of XTX , then

V TXTXV = Λ

Let’s write Y = XV , and Y T = V TXT . In other words,

~ym = V T (~xm − ~µ)

~ym = [ym0, . . . , ym,D−1]T is the vector of principal components of
~xm. Expanding the formula Y TY = Λ, we discover that PCA
orthogonalizes the dataset:

M−1∑
m=0

yimyjm =

{
λi i = j

0 i 6= j
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Principal components

~ym = V T (~xm − ~µ)
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Principal components with larger eigenvalues have more
energy
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Eigenvalue=Energy of the Principal Component

The total dataset energy is

M−1∑
m=0

y2mi = λi

But remember that V TV = I . Therefore, the total dataset energy
is the same, whether you calculate it in the original image domain,
or in the PCA domain:

M−1∑
m=0

D−1∑
d=0

(xmd − µd)2 =
M−1∑
m=0

D−1∑
i=0

y2mi =
D−1∑
i=0

λi



Outline Review Symmetric Images PCA Gram Summary

Energy spectrum=Fraction of energy explained

The “energy spectrum” is energy as a function of basis vector
index. There are a few ways we could define it, but one useful
definition is:

E [k] =

∑M−1
m=0

∑k−1
i=0 y2mi∑M−1

m=0

∑D−1
i=0 y2mi

=

∑k−1
i=0 λi∑D−1
i=0 λi
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Energy spectrum=Fraction of energy explained
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Gram matrix

XTX is usually called the
sum-of-squares matrix.

1
M−1X

TX is the sample
covariance.

G = XXT is called the gram
matrix. Its (i , j)th element is
the dot product between the
i th and j th data samples:

gij = (~xi − ~µ)T (~xj − ~µ)

Gram matrix
g01 = (~x0 − ~µ)T (~x1 − ~µ)



Outline Review Symmetric Images PCA Gram Summary

Eigenvectors of the Gram matrix

XXT is also symmetric! So it has
orthonormal eigenvectors:

XXT = UΛUT

UUT = UTU = I

XTX and XXT have the same
eigenvalues (Λ), but different
eigenvectors (V vs. U).

Gram matrix
g01 = (~x0 − ~µ)T (~x1 − ~µ)
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Why the Gram matrix is useful:

Suppose (as in MP1) that D ∼ 240000 pixels per image, but
M ∼ 240 different images. Then, in order to perform this
eigenvalue analysis:

XTX = VΛV T

. . . requires factoring a 240000th-order polynomial
(|XTX − λI | = 0), then solving 240000 simultaneous linear
equations in 240000 unknowns to find each eigenvector
(XTX~vd = λd~vd). If you try doing that using np.linalg.eig,
your PC will be running all day. On the other hand,

XXT = UΛUT

requires only 240 equations in 240 unknowns. Educated experts
agree: 2402 � 2400002.
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Singular Values

Both XTX and XXT are positive semi-definite, meaning that
their eigenvalues are non-negative, λd ≥ 0.

The singular values of X are defined to be the square roots
of the eigenvalues of XTX and XXT :

S =

 s0 0 0
0 . . . 0
0 0 sD−1

 , Λ = S2 =

 s20 0 0
0 . . . 0
0 0 s2D−1


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Singular Value Decomposition

XTX = VΛV T = VSSV T

XXT = UΛUT = USSUT
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Singular Value Decomposition

XTX = VSSV T = VSISV T = VSUTUSV T = (USV T )T (USV T )

XXT = USSUT = USISUT = USV TVSUT = (USV T )(USV T )T
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Singular Value Decomposition

Any matrix, X , can be written as X = USV T .

U = [~u0, . . . , ~uM−1] are the eigenvectors of XXT .

V = [~v0, . . . , ~vD−1] are the eigenvectors of XTX .

S =

 s0 0 0 0 0
0 . . . 0 0 0
0 0 smin(D,M)−1 0 0

 are the singular values.

S has some all-zero columns if M > D, or all-zero rows if M < D.
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What np.linalg.svd does

First, np.linalg.svd decides whether it wants to find the
eigenvectors of XTX or XXT : it just checks to see whether
M > D or vice versa. If it discovers that M < D, then:

1 Compute XXT = UΛUT , and S =
√

Λ. Now we have U and
S , we just need to find V .

2 Since XT = VSUT , we can get V by just multiplying:

Ṽ = XTU

. . . where Ṽ = VS is exactly equal to V , but with each
column scaled by a different singular value. So we just need to
normalize:

‖~vi‖ = 1, vi0 > 0
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Methods that solve MP1

Direct eigenvector analysis of XTX gives the right answer,
but takes a very long time. When I tried this, it timed out the
autograder.

Applying np.linalg.svd to X should give the right answer,
very fast. I haven’t tried it this year, but it worked on last
year’s dataset.

What I tried, this year, is the gram matrix method: Apply
np.linalg.eig to get U from XXT . Multiply Ṽ = XTU,
then normalize the columns to get V .
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Summary

Symmetric matrices:

A = VΛV T , V TAV = Λ, V TV = VV T = I

Centered dataset:

X =

 (~x0 − ~µ)T

...
(~xM−1 − ~µ)T


Singular value decomposition:

X = USV T

where V are eigenvectors of the sum-of-squares matrix, U are
eigenvectors of the gram matrix, and Λ = S2 are their shared
eigenvalues.
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