Outline	DTFT	Linear Algebra	Summary

Lecture 1: Review of DTFT, Gaussians, and Linear Algebra

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2020

Outline	DTFT	Linear Algebra	Summary

- 2 Review: DTFT
- 3 Review: Gaussians
- 4 Review: Linear Algebra

Outline	DTFT		Linear Algebra	Summary
00	0000	0000000	0000000	0
Outline				

- 2 Review: DTFT
- 3 Review: Gaussians
- 4 Review: Linear Algebra

 Outline
 DTFT
 Gaussians
 Linear Algebra
 Summary

 •o
 00000000
 00000000
 0
 0
 0

- Syllabus
- **2** Homework 1
- Seview: DTFT, Gaussians, and Linear Algebra

 Outline
 DTFT
 Gaussians
 Linear Algebra
 Summary

 0•
 0000
 0000000
 0000000
 0

- - ECE 310 Digital Signal Processing
 - ECE 313 Probability with Engineering Applications

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Math 286 Intro to Differential Eq Plus

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	0000	0000000	0000000	O
Outline				

- Outline of today's lecture
- 2 Review: DTFT
- 3 Review: Gaussians
- 4 Review: Linear Algebra

The discrete-time Fourier transform of a signal x[n] is

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

The inverse DTFT is

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	o●oo	0000000	0000000	O
DTFT o	f a rectangle			

One of the most important DTFTs you should know is the DTFT of a length-N rectangle:

$$x[n] = u[n] - u[n - N] = egin{cases} 1 & 0 \le n \le N - 1 \ 0 & ext{otherwise} \end{cases}$$

lt is

$$X(\omega) = \sum_{n=0}^{N-1} e^{-j\omega n} = \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}} = e^{-j\omega \left(\frac{N-1}{2}\right)} \frac{\sin(\omega N/2)}{\sin(\omega/2)}$$

Smith, J.O. "The Rectangular Window", in Spectral Audio Signal Processing, online book, 2011 edition.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	0000		0000000	O
Outline				

- Outline of today's lecture
- 2 Review: DTFT
- 3 Review: Gaussians
- 4 Review: Linear Algebra

By InductiveLoad, public domain, https://commons.wikimedia.org/wiki/File:Normal_Distribution_PDF.svg

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	0000	0●000000	0000000	O
Normal pdf				

A Gaussian random variable, X, is one whose probability density function is given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

where μ and σ^2 are the mean and variance,

$$\mu = E[X], \quad \sigma^2 = E[(X - \mu)^2]$$

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	0000	00●00000	0000000	O
Standard no	ormal			

The cumulative distribution function (CDF) of a Gaussian RV is

$$F_X(x) = P\left\{X \le x\right\} = \int_{-\infty}^x f_X(y) dy = \int_{-\infty}^{(x-\mu)/\sigma} f_Z(y) dy = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

where $Z = \frac{X-\mu}{\sigma}$ is called the standard normal random variable. It is a Gaussian with zero mean, and unit variance:

$$f_Z(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$$

We define $\Phi(z)$ to be the CDF of the standard normal RV:

$$\Phi(z)=\int_{-\infty}^z f_Z(y)dy$$

(日) (日) (日) (日) (日) (日) (日) (日)

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	0000	000●0000	0000000	O
Multivariate	normal pdf			

By Bscan, public domain, https://commons.wikimedia.org/wiki/File:MultivariateNormal.png

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Two random variables, X_1 and X_2 , are jointly Gaussian if

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi |\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^T \Sigma^{-1}(\vec{x}-\vec{\mu})}$$

where \vec{X} is the random vector, $\vec{\mu}$ is its mean, and Σ is its covariance matrix,

$$\vec{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \quad \vec{\mu} = E\begin{bmatrix} \vec{X} \end{bmatrix}, \quad \Sigma = E\begin{bmatrix} (\vec{X} - \vec{\mu})^T (\vec{X} - \vec{\mu}) \end{bmatrix}$$

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	0000	00000●00	0000000	O
Covariance				

The covariance matrix has four elements:

$$\boldsymbol{\Sigma} = \left[\begin{array}{cc} \sigma_1^2 & \rho_{12} \\ \rho_{21} & \sigma_2^2 \end{array} \right]$$

 σ_1^2 and σ_2^2 are the variances of X_1 and X_2 , respectively. $\rho_{12} = \rho_{21}$ is the covariance of X_1 and X_2 :

$$\mu_{1} = E[X_{1}]$$

$$\sigma_{1}^{2} = E[(X_{1} - \mu_{1})^{2}]$$

$$\sigma_{2}^{2} = E[(X_{2} - \mu_{2})^{2}]$$

$$\rho_{12} = E[(X_{1} - \mu_{1})(X_{2} - \mu_{2})]$$

 Outline
 DTFT
 Gaussians
 Linear Algebra
 Summary

 Jointly Gaussian Random Variables

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi |\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^T \Sigma^{-1}(\vec{x}-\vec{\mu})}$$

The multivariate normal pdf contains the determinant and the inverse of Σ . For a two-dimensional vector \vec{X} , these are

$$\begin{split} \boldsymbol{\Sigma} &= \begin{bmatrix} \sigma_1^2 & \rho_{12} \\ \rho_{21} & \sigma_2^2 \end{bmatrix} \\ |\boldsymbol{\Sigma}| &= \sigma_1^2 \sigma_2^2 - \rho_{12} \rho_{21} \\ \boldsymbol{\Sigma}^{-1} &= \frac{1}{|\boldsymbol{\Sigma}|} \begin{bmatrix} \sigma_2^2 & -\rho_{12} \\ -\rho_{21} & \sigma_1^2 \end{bmatrix} \end{split}$$

Notice that if two Gaussian random variables are uncorrelated $(\rho_{12} = 0)$, then they are also independent:

$$\begin{split} f_{X_1,X_2}(x_1,x_2) &= \frac{1}{2\pi |\Sigma|^{1/2}} e^{-\frac{1}{2} \left[\begin{array}{c} x_1 - \mu_1 \\ x_2 - \mu_2 \end{array} \right]^T \left[\begin{array}{c} \sigma_2^2 & 0 \\ 0 & \sigma_1^2 \end{array} \right] \left[\begin{array}{c} x_1 - \mu_1 \\ x_2 - \mu_2 \end{array} \right]} \\ &= \frac{1}{2\pi |\Sigma|^{1/2}} e^{-\frac{1}{2} \left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right)} \\ &= \left(\frac{1}{2\pi \sigma_1 \sigma_2} e^{-\frac{1}{2} \left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} \right)} \right) \left(\frac{1}{\sqrt{2\pi \sigma_2^2}} e^{-\frac{1}{2} \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2} \right) \\ &= f_{X_1}(x_1) f_{X_2}(x_2) \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	0000	0000000		O
Outline				

- Outline of today's lecture
- 2 Review: DTFT
- 3 Review: Gaussians
- 4 Review: Linear Algebra

Outline	DTFT	Linear Algebra	Summary
		000000	

A linear transform $\vec{y} = A\vec{x}$ maps vector space \vec{x} onto vector space \vec{y} . For example: the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ maps the vectors $\vec{x_0}, \vec{x_1}, \vec{x_2}, \vec{x_3} =$

$$\left[\begin{array}{c}1\\0\end{array}\right], \left[\begin{array}{c}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{array}\right], \left[\begin{array}{c}0\\1\end{array}\right], \left[\begin{array}{c}-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{array}\right]$$

to the vectors $ec{y_0}, ec{y_1}, ec{y_2}, ec{y_3} =$

$$\left[\begin{array}{c}1\\0\end{array}\right], \left[\begin{array}{c}\sqrt{2}\\\sqrt{2}\end{array}\right], \left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}0\\\sqrt{2}\end{array}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	DTFT	Linear Algebra	Summary
		000000	

A linear transform $\vec{y} = A\vec{x}$ maps vector space \vec{x} onto vector space \vec{y} . The absolute value of the determinant of A tells you how much the area of a unit circle is changed under the transformation. For example, if $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, then the unit circle in \vec{x} (which has an area of π) is mapped to an ellipse with an area that is abs(|A|) = 2 times larger, i.e., i.e., $\pi \operatorname{abs}(|A|) = 2\pi.$

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Outline	DTFT	Linear Algebra	Summary
00		000000	

For a D-dimensional square matrix, there may be up to D different directions $\vec{x} = \vec{v_d}$ such that, for some scalar λ_d , $A\vec{v_d} = \lambda_d\vec{v_d}$. For example, if $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, then the eigenvectors are

$$\vec{v}_0 = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \quad \vec{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix},$$

and the eigenvalues are $\lambda_0 = 1$, $\lambda_1 = 2$. Those vectors are red and extra-thick, in the figure to the left. Notice that one of the vectors gets scaled by $\lambda_0 = 1$, but the other gets scaled by $\lambda_1 = 2$.

Outline	DTFT	Linear Algebra	Summary
		000000	

An eigenvector is a direction, not just a vector. That means that if you multiply an eigenvector by any scalar, you get the same eigenvector: if $A\vec{v_d} = \lambda_d\vec{v_d}$, then its also true that $cA\vec{v_d} = c\lambda_d\vec{v_d}$ for any scalar c. For example: the following are the same eigenvector as $\vec{v_1}$

$$\sqrt{2}\vec{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad -\vec{v}_1 = \begin{bmatrix} -\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}} \end{bmatrix}$$

Since scale and sign don't matter, by convention, we normalize so that an eigenvector is always unit-length $(\|\vec{v}_d\| = 1)$ and the first nonzero element is non-negative $(v_{d0} > 0)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

00 0000 000000 000000 0	Outline	DTFT	Linear Algebra	Summary
			000000	

Eigenvalues: Before you find the eigenvectors, you should first find the eigenvalues. You can do that using this fact:

$$\begin{aligned} A \vec{v}_d &= \lambda_d \vec{v}_d \\ A \vec{v}_d &= \lambda_d I \vec{v}_d \\ A \vec{v}_d - \lambda_d I \vec{v}_d &= \vec{0} \\ (A - \lambda_d I) \vec{v}_d &= \vec{0} \end{aligned}$$

That means that when you use the linear transform $(A - \lambda_d I)$ to transform the unit circle, the result has an area of $|A - \lambda I| = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	DTFT	Linear Algebra	Summary
		0000000	

- The determinant $|A \lambda I|$ is a D^{th} -order polynomial in λ .
- By the fundamental theorem of algebra, the equation

$$|A - \lambda I| = 0$$

has exactly D roots (counting repeated roots and complex roots).

- Therefore, any square matrix has exactly *D* eigenvalues (counting repeated eigenvalues, and complex eigenvalues.
- The same is not true of eigenvalues. Not every square matrix has eigenvectors. Complex and repeated eigenvalues usually correspond to eigensubspaces, not eigenvectors.

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	0000	00000000	0000000	O
Outline				

- Outline of today's lecture
- 2 Review: DTFT
- 3 Review: Gaussians
- 4 Review: Linear Algebra

Outline	DTFT	Gaussians	Linear Algebra	Summary
00	0000	00000000	0000000	•
Summary				

• DTFT of a rectangle:

$$x[n] = u[n] - u[n - N] \leftrightarrow X(\omega) = e^{-j\omega\left(\frac{N-1}{2}\right)} \frac{\sin(\omega N/2)}{\sin(\omega/2)}$$

• Jointly Gaussian RVs:

$$f_{\vec{X}}(\vec{x}) = \frac{1}{2\pi |\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu})}$$

• Linear algebra:

$$|A - \lambda I| = 0, \quad A\vec{v} = \lambda \vec{v}$$