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Algebra

Mark Hasegawa-Johnson

ECE 417: Multimedia Signal Processing, Fall 2020



Outline DTFT Gaussians Linear Algebra Summary

1 Outline of today’s lecture

2 Review: DTFT

3 Review: Gaussians

4 Review: Linear Algebra

5 Summary



Outline DTFT Gaussians Linear Algebra Summary

Outline

1 Outline of today’s lecture

2 Review: DTFT

3 Review: Gaussians

4 Review: Linear Algebra

5 Summary



Outline DTFT Gaussians Linear Algebra Summary

Outline of today’s lecture

1 Syllabus

2 Homework 1

3 Review: DTFT, Gaussians, and Linear Algebra

https://courses.engr.illinois.edu/ece417/fa2020/#syllabus
https://courses.engr.illinois.edu/ece417/fa2020/hw1.pdf
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What are the pre-requisites for ECE 417?

ECE 310 Digital Signal Processing

ECE 313 Probability with Engineering Applications

Math 286 Intro to Differential Eq Plus

https://courses.grainger.illinois.edu/ece310/fa2020/
https://courses.grainger.illinois.edu/ece313/fa2020/
https://netmath.illinois.edu/college/math-286
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Discrete-Time Fourier Transform

The discrete-time Fourier transform of a signal x [n] is

X (ω) =
∞∑

n=−∞
x [n]e−jωn

The inverse DTFT is

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω



Outline DTFT Gaussians Linear Algebra Summary

DTFT of a rectangle

One of the most important DTFTs you should know is the DTFT
of a length-N rectangle:

x [n] = u[n]− u[n − N] =

{
1 0 ≤ n ≤ N − 1

0 otherwise

It is

X (ω) =
N−1∑
n=0

e−jωn =
1− e−jωN

1− e−jω
= e−jω(N−1

2 ) sin(ωN/2)

sin(ω/2)
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Smith, J.O. ”The Rectangular Window”, in Spectral Audio Signal Processing, online book, 2011 edition.

http://ccrma.stanford.edu/~jos/sasp/Rectangular_Window.html
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Gaussian (a.k.a. normal) pdf

By InductiveLoad, public domain, https://commons.wikimedia.org/wiki/File:Normal_Distribution_PDF.svg

https://commons.wikimedia.org/wiki/File:Normal_Distribution_PDF.svg


Outline DTFT Gaussians Linear Algebra Summary

Normal pdf

A Gaussian random variable, X , is one whose probability density
function is given by

fX (x) =
1√

2πσ2
e−

1
2

(x−µ)2

σ2

where µ and σ2 are the mean and variance,

µ = E [X ] , σ2 = E
[
(X − µ)2

]
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Standard normal

The cumulative distribution function (CDF) of a Gaussian RV is

FX (x) = P {X ≤ x} =

∫ x

−∞
fX (y)dy =

∫ (x−µ)/σ

−∞
fZ (y)dy = Φ

(
x − µ
σ

)
where Z = X−µ

σ is called the standard normal random variable. It
is a Gaussian with zero mean, and unit variance:

fZ (z) =
1√
2π

e−
1
2
z2

We define Φ(z) to be the CDF of the standard normal RV:

Φ(z) =

∫ z

−∞
fZ (y)dy
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Multivariate normal pdf

By Bscan, public domain, https://commons.wikimedia.org/wiki/File:MultivariateNormal.png

https://commons.wikimedia.org/wiki/File:MultivariateNormal.png
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Jointly Gaussian Random Variables

Two random variables, X1 and X2, are jointly Gaussian if

fX1,X2(x1, x2) =
1

2π|Σ|1/2
e−

1
2

(~x−~µ)T Σ−1(~x−~µ)

where ~X is the random vector, ~µ is its mean, and Σ is its
covariance matrix,

~X =

[
X1

X2

]
, ~µ = E

[
~X
]
, Σ = E

[
(~X − ~µ)T (~X − ~µ)

]
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Covariance

The covariance matrix has four elements:

Σ =

[
σ2

1 ρ12

ρ21 σ2
2

]
σ2

1 and σ2
2 are the variances of X1 and X2, respectively. ρ12 = ρ21

is the covariance of X1 and X2:

µ1 = E [X1]

σ2
1 = E

[
(X1 − µ1)2

]
σ2

2 = E
[
(X2 − µ2)2

]
ρ12 = E [(X1 − µ1)(X2 − µ2)]
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Jointly Gaussian Random Variables

fX1,X2(x1, x2) =
1

2π|Σ|1/2
e−

1
2

(~x−~µ)T Σ−1(~x−~µ)

The multivariate normal pdf contains the determinant and the
inverse of Σ. For a two-dimensional vector ~X , these are

Σ =

[
σ2

1 ρ12

ρ21 σ2
2

]
|Σ| = σ2

1σ
2
2 − ρ12ρ21

Σ−1 =
1

|Σ|

[
σ2

2 −ρ12

−ρ21 σ2
1

]
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Gaussian: Uncorrelated ⇔ Independent

Notice that if two Gaussian random variables are uncorrelated
(ρ12 = 0), then they are also independent:

fX1,X2(x1, x2) =
1

2π|Σ|1/2
e
− 1

2

 x1 − µ1

x2 − µ2


T σ2

2 0
0 σ2

1


 x1 − µ1

x2 − µ2


σ2

1
σ2

2

=
1

2πσ1σ2
e
− 1

2

(
(x1−µ1)2

σ2
1

+
(x2−µ2)2

σ2
2

)

=

 1√
2πσ2

1

e
− 1

2

(
x1−µ2

σ1

)2

 1√
2πσ2

2

e
− 1

2

(
x2−µ2

σ2

)2


= fX1(x1)fX2(x2)
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A linear transform ~y = A~x maps vector
space ~x onto vector space ~y . For example:

the matrix A =

[
1 1
0 2

]
maps the vectors

~x0, ~x1, ~x2, ~x3 =[
1
0

]
,

[
1√
2

1√
2

]
,

[
0
1

]
,

[
− 1√

2
1√
2

]

to the vectors ~y0, ~y1, ~y2, ~y3 =[
1
0

]
,

[ √
2√
2

]
,

[
1
2

]
,

[
0√
2

]
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A linear transform ~y = A~x maps vector
space ~x onto vector space ~y . The absolute
value of the determinant of A tells you how
much the area of a unit circle is changed
under the transformation.

For example, if A =

[
1 1
0 2

]
, then the

unit circle in ~x (which has an area of π) is
mapped to an ellipse with an area that is
abs(|A|) = 2 times larger, i.e., i.e.,
πabs(|A|) = 2π.
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For a D-dimensional square matrix, there
may be up to D different directions ~x = ~vd
such that, for some scalar λd , A~vd = λd~vd .

For example, if A =

[
1 1
0 2

]
, then the

eigenvectors are

~v0 =

[
1
0

]
, ~v1 =

[
1√
2

1√
2

]
,

and the eigenvalues are λ0 = 1, λ1 = 2.
Those vectors are red and extra-thick, in
the figure to the left. Notice that one of
the vectors gets scaled by λ0 = 1, but the
other gets scaled by λ1 = 2.
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An eigenvector is a direction, not just a
vector. That means that if you multiply an
eigenvector by any scalar, you get the same
eigenvector: if A~vd = λd~vd , then its also
true that cA~vd = cλd~vd for any scalar c .
For example: the following are the same
eigenvector as ~v1

√
2~v1 =

[
1
1

]
, − ~v1 =

[
− 1√

2

− 1√
2

]

Since scale and sign don’t matter, by
convention, we normalize so that an
eigenvector is always unit-length
(‖~vd‖ = 1) and the first nonzero element is
non-negative (vd0 > 0).
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Eigenvalues: Before you find the
eigenvectors, you should first find the
eigenvalues. You can do that using this
fact:

A~vd = λd~vd

A~vd = λd I~vd

A~vd − λd I~vd = ~0

(A− λd I )~vd = ~0

That means that when you use the linear
transform (A− λd I ) to transform the unit
circle, the result has an area of
|A− λI | = 0.
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Example:

|A− λI | =

∣∣∣∣ 1− λ 1
0 2− λ

∣∣∣∣
= 2− 3λ+ λ2

which has roots at λ0 = 1, λ1 = 2
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There are always D eigenvalues

The determinant |A− λI | is a Dth-order polynomial in λ.

By the fundamental theorem of algebra, the equation

|A− λI | = 0

has exactly D roots (counting repeated roots and complex
roots).

Therefore, any square matrix has exactly D eigenvalues
(counting repeated eigenvalues, and complex eigenvalues.

The same is not true of eigenvalues. Not every square
matrix has eigenvectors. Complex and repeated eigenvalues
usually correspond to eigensubspaces, not eigenvectors.
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Summary

DTFT of a rectangle:

x [n] = u[n]− u[n − N]↔ X (ω) = e−jω(N−1
2 ) sin(ωN/2)

sin(ω/2)

Jointly Gaussian RVs:

f~X (~x) =
1

2π|Σ|1/2
e−

1
2

(~x−~µ)T Σ−1(~x−~µ)

Linear algebra:

|A− λI | = 0, A~v = λ~v
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