Lecture 1: Review of DTFT, Gaussians, and Linear
Algebra
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@ Syllabus
@ Homework 1
© Review: DTFT, Gaussians, and Linear Algebra


https://courses.engr.illinois.edu/ece417/fa2020/#syllabus
https://courses.engr.illinois.edu/ece417/fa2020/hw1.pdf
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What are the pre-requisites for ECE 4177

e ECE 310 Digital Signal Processing
o ECE 313 Probability with Engineering Applications
o Math 286 Intro to Differential Eq Plus


https://courses.grainger.illinois.edu/ece310/fa2020/
https://courses.grainger.illinois.edu/ece313/fa2020/
https://netmath.illinois.edu/college/math-286
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Discrete-Time Fourier Transform

The discrete-time Fourier transform of a signal x[n] is

o0

X(w) = Z x[n]e=n

n=—oo

The inverse DTFT is

x[n] = % /ﬂ X(w)e™ dw
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DTFT of a rectangle

One of the most important DTFTs you should know is the DTFT
of a length-N rectangle:

1 0<n<<N-1

0 otherwise

x[n] = u[n] — u[n — N] = {

It is

N—1 ; ,
; 1—eJwN _iw(N=1ysin(wN/2)
X = —Jwn — _— = _/UJ( )7
(©) ;} y 1_edo  °© i sin(w/2)
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Prhase of Rectangular Window

Tranaform (M — 11>

Main tobe

Smith, J.O. " The Rectangular Window", in Spectral Audio Signal Processing, online book, 2011 edition.

> (rac/aamsie>



http://ccrma.stanford.edu/~jos/sasp/Rectangular_Window.html
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DFT of a Rectangular Window — M = 11
0 T T T T T

main lobe

sidelobes

Magnitude (dB)

Normalized Frequency o (rad/sample)
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Gaussian (a.k.a. normal) pdf

By Inductiveload, public domain, https://commons.wikimedia.org/wiki/File:Normal_Distribution_PDF.svg


https://commons.wikimedia.org/wiki/File:Normal_Distribution_PDF.svg
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Normal pdf

A Gaussian random variable, X, is one whose probability density
function is given by

fx(x) = e 275

V2mo?

where 11 and o are the mean and variance,

p=E[X], o®=E[X-p)]
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Standard normal

The cumulative distribution function (CDF) of a Gaussian RV is

Fx(x) = P{X < x} = /Xoo fx(y)dy = /(X_WU fz(y)dy = ® (X . M)

— 00
where Z = % is called the standard normal random variable. It
is a Gaussian with zero mean, and unit variance:
1 1
f7(z) = —e 27

s
We define ®(z) to be the CDF of the standard normal RV:

2
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Multivariate normal pdf

(x)d

By Bscan, public domain, https://commons.wikimedia.org/wiki/File:MultivariateNormal.png


https://commons.wikimedia.org/wiki/File:MultivariateNormal.png
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Jointly Gaussian Random Variables

Two random variables, X; and X3, are jointly Gaussian if

1 _

’ ‘1/26 (X—i@) "= (R—D)
27 |X

fx, % (x1,x2) =

where X is the random vector, i is its mean, and ¥ is its
covariance matrix,

X = [2] i-E[X]. T=E[X-pTX-p
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Covariance

The covariance matrix has four elements:

y = { O—% P12 ]
P21 03

a% and 05 are the variances of X1 and X5, respectively. p12 = p21
is the covariance of X; and X5:

p = E[Xq]

of = E [(X1 — m)?]

03 = E [(Xa — p2)?]

p12 = E[(X1 — p1)(Xa — p2)]
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Jointly Gaussian Random Variables

1 M=) T Y=
fX17X2(X1’X2):We 3 (X=) "2 (X=0)

The multivariate normal pdf contains the determinant and the
inverse of . For a two-dimensional vector X, these are

Yy — |: 0-% P12 :|
P21 J%
=] = 0305 — p12pa

Zflzi U% —pP12
Z| | —pa1  of
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Gaussian: Uncorrelated < Independent

Notice that if two Gaussian random variables are uncorrelated
(p12 = 0), then they are also independent:

2
X1 — pi1 o; O X1—/~t1}
2
1 LLoxe— p2 0 of || x— 2
o (X1, %) = ———=€ °io3
’ 2m|x|1/2
X1 — 2 X —
1 _%((1051) +(2g§2) )
= e 1 2
2mo102
1 71<Xru2>2 1 7;(@*#2)2
— e 2 o1 e 2 oy
2 2
2mwoy 2mos

= fx, (x1)fx(x2)
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A linear transform y = AX maps vector
space X onto vector space y. For example:

the matrix A = [ !

0 2 ] maps the vectors

X0, X1, X2, X3 =

OIEIIGIES

to the vectors yp, yi, Vo, y3 =

[o)-1v2) 2] [ 2]

N
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A linear transform y = AX maps vector
space X onto vector space y. The absolute
value of the determinant of A tells you how
much the area of a unit circle is changed

under the transformation.
11

0 2
unit circle in X (which has an area of 7) is
mapped to an ellipse with an area that is
abs(|A|) = 2 times larger, i.e., i.e., \_V
mabs(|A|) = 2.

For example, if A = ] , then the
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For a D-dimensional square matrix, there
may be up to D different directions X = vy
such that, for some scalar Ay, AvVy = AgVy.

L2 ] then the

For example, if A = [ 0 2

eigenvectors are

3] +-[3]

and the eigenvalues are \g = 1, A\; = 2.
Those vectors are red and extra-thick, in
the figure to the left. Notice that one of
the vectors gets scaled by A\g = 1, but the
other gets scaled by A\; = 2.

HS‘I—‘
N
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An eigenvector is a direction, not just a
vector. That means that if you multiply an
eigenvector by any scalar, you get the same
eigenvector: if Avy = AgVy, then its also
true that cAVy = cAqVy for any scalar c.
For example: the following are the same
eigenvector as v

fmz{l}, 5

I
SESE

Since scale and sign don’t matter, by
convention, we normalize so that an
eigenvector is always unit-length

([[V4]l = 1) and the first nonzero element is
non-negative (vyo > 0).
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Eigenvalues: Before you find the
eigenvectors, you should first find the
eigenvalues. You can do that using this
fact:

A\7d = >\d‘7d
AVy = Mgl Vy
AVy — A\glvy =0

(A= Agl)Vy =0

That means that when you use the linear
transform (A — Ay/) to transform the unit
circle, the result has an area of

|A— Al =0.
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Example:
1-A 1
|A_M’_‘ 0 2-2)\ ’
=2-3x+ )\
which has roots at \g =1, \{ =2
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There are always D eigenvalues

The determinant |A — /| is a D*®-order polynomial in \.

@ By the fundamental theorem of algebra, the equation
|JA—X|=0

has exactly D roots (counting repeated roots and complex
roots).

@ Therefore, any square matrix has exactly D eigenvalues
(counting repeated eigenvalues, and complex eigenvalues.

@ The same is not true of eigenvalues. Not every square
matrix has eigenvectors. Complex and repeated eigenvalues
usually correspond to eigensubspaces, not eigenvectors.
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@ DTFT of a rectangle:

N— 1)S|n(wN/2)

x[n] = u[n] — u[n — N] + X(w) = e n(w/2)
@ Jointly Gaussian RVs:

1 1 Ts—1
oy L E-)TE ()
f( ) 27_[.|z’1/2€ 2

@ Linear algebra:

A= M| =0, AV=A\V
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