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Problem 4.1

Write a phonemic transcription of the sentence “At the still point, there the dance is” (by T.S. Eliot)
using either IPA or ARPABET.

Problem 4.2

The softmax computes an estimate of the state posterior pmf, p(q|~x). As discussed in lecture, you can’t
compute exactly the likelihood from the softmax, but you can compute it up to a constant factor G[t]:

bq[t] =
G[t] exp(eq[t])

p(q)
,

where p(q) ∈ [0, 1] is the prior probability of q, eq[t] is the qth node of the neural network’s final-layer
excitation in frame t, and G[t] is a constant, in the sense that it depends on t, but not on q. G[t] is unknown,
but an estimate with nice numerical properties is

G[t] =
1

maxj exp(ej [t])

In HMM training with known segmentation, the parameters of the HMM might be trained using a kind of
maximum-likelihood criterion similar to cross-entropy, specifically, the network parameters are trained to
minimize

L = −
N∑
i=1

∑
t:qt=i

ln bi[t],

where you may assume that qt, the state variable at time t, is known. Find dL
deq [τ ]

, for some particular value

of τ , for all values of q. Be careful:

• Notice that G[τ ] depends on ej [τ ], even for values of j other than qt.

• You may find it useful to consider, separately, the following four cases:

(a) q = qτ

(b) q = argmaxj ej [τ ]

(c) Both of the above

(d) Neither of the above
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Problem 4.3

In a Markov model, the state at time t depends only on the state at time t− 1. A semi-Markov model
is a model in which the state at time t depends on a short list of recent states. For example, consider a
model in which qt depends on the most recent two frames. Let’s suppose the model is fully defined by the
following three types of parameters:

• Initial segment probability: πij ≡ p(q1 = i, q2 = j|Λ)

• Transition probability: aijk ≡ p(qt = k|qt−1 = j, qt−2 = i,Λ)

• Observation probability: bk(~x) ≡ p(~xt = ~x|qt = k,Λ)

Design an algorithm similar to the forward algorithm that is able to compute p(X|Λ) with a computational
complexity of at most O

{
TN3

}
. Provide a proof that your algorithm has at most O

{
TN3

}
complexity —

this can be an informal proof in the form of a bullet list, as was provided during lecture 12 for the standard
forward algorithm.

Problem 4.4

Suppose you have a sequence of T = 100 consecutive observations, X = [x1, . . . , xT ]. Suppose that the
observations are discrete, xt ∈ {1, . . . , 20}. You have it on good information that these data can be modeled
by an HMM with N = 10 states, whose parameters are

• Initial state probability: πi ≡ p(q1 = i|Λ)

• Transition probability: aij ≡ p(qt = j|qt−1 = i,Λ)

• Observation probability: bj(x) ≡ p(xt = x|qt = j,Λ)

In terms of these model parameters, and in terms of the forward probabilities αt(i) and backward probabilities
βt(i) (for any values of i, j, t, x that are useful to you), what is p(q17 = 7, x18 = 3|x1, . . . , x17, x19, . . . , x100,Λ)?


