ECE 417 Multimedia Signal Processing Homework 4

UNIVERSITY OF ILLINOIS

Department of Electrical and Computer Engineering

Assigned: Tuesday, 10/8/2020; Due: Monday, 10/19/2020Reading: L.R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, 1989

Problem 4.1

Write a phonemic transcription of the sentence "At the still point, there the dance is" (by T.S. Eliot) using either IPA or ARPABET.

Problem 4.2

The softmax computes an estimate of the state posterior pmf, $p(q|\vec{x})$. As discussed in lecture, you can't compute exactly the likelihood from the softmax, but you can compute it up to a constant factor G[t]:

$$b_q[t] = \frac{G[t] \exp(e_q[t])}{p(q)},$$

where $p(q) \in [0,1]$ is the prior probability of q, $e_q[t]$ is the q^{th} node of the neural network's final-layer excitation in frame t, and G[t] is a constant, in the sense that it depends on t, but not on q. G[t] is unknown, but an estimate with nice numerical properties is

$$G[t] = \frac{1}{\max_{j} \exp(e_{j}[t])}$$

In HMM training with known segmentation, the parameters of the HMM might be trained using a kind of maximum-likelihood criterion similar to cross-entropy, specifically, the network parameters are trained to minimize

$$\mathcal{L} = -\sum_{i=1}^{N} \sum_{t:q_t=i} \ln b_i[t],$$

where you may assume that q_t , the state variable at time t, is known. Find $\frac{d\mathcal{L}}{de_q[\tau]}$, for some particular value of τ , for all values of q. Be careful:

- Notice that $G[\tau]$ depends on $e_j[\tau]$, even for values of j other than q_t .
- You may find it useful to consider, separately, the following four cases:
 - (a) $q = q_{\tau}$
 - (b) $q = \operatorname{argmax}_{i} e_{i}[\tau]$
 - (c) Both of the above
 - (d) Neither of the above

Homework 4

Problem 4.3

In a Markov model, the state at time t depends only on the state at time t-1. A **semi-Markov model** is a model in which the state at time t depends on a short list of recent states. For example, consider a model in which q_t depends on the most recent **two** frames. Let's suppose the model is fully defined by the following three types of parameters:

- Initial segment probability: $\pi_{ij} \equiv p(q_1 = i, q_2 = j | \Lambda)$
- Transition probability: $a_{ijk} \equiv p(q_t = k | q_{t-1} = j, q_{t-2} = i, \Lambda)$
- Observation probability: $b_k(\vec{x}) \equiv p(\vec{x}_t = \vec{x}|q_t = k, \Lambda)$

Design an algorithm similar to the forward algorithm that is able to compute $p(X|\Lambda)$ with a computational complexity of at most $\mathcal{O}\left\{TN^3\right\}$. Provide a proof that your algorithm has at most $\mathcal{O}\left\{TN^3\right\}$ complexity—this can be an informal proof in the form of a bullet list, as was provided during lecture 12 for the standard forward algorithm.

Problem 4.4

Suppose you have a sequence of T = 100 consecutive observations, $X = [x_1, ..., x_T]$. Suppose that the observations are discrete, $x_t \in \{1, ..., 20\}$. You have it on good information that these data can be modeled by an HMM with N = 10 states, whose parameters are

- Initial state probability: $\pi_i \equiv p(q_1 = i | \Lambda)$
- Transition probability: $a_{ij} \equiv p(q_t = j | q_{t-1} = i, \Lambda)$
- Observation probability: $b_i(x) \equiv p(x_t = x | q_t = j, \Lambda)$

In terms of these model parameters, and in terms of the forward probabilities $\alpha_t(i)$ and backward probabilities $\beta_t(i)$ (for any values of i, j, t, x that are useful to you), what is $p(q_{17} = 7, x_{18} = 3 | x_1, \dots, x_{17}, x_{19}, \dots, x_{100}, \Lambda)$?