IMAGE WARPING

Vuong Le Dept. Of ECE University of Illinois

ECE 417 – Spring 2013
With some slides from Alexei Efros, Steve Seitz, Jilin Tu, and Hao Tang

Content

- Introduction
- Parametric warping
- Barycentric coordinates
- Interpolation
- MP6

Content

- Introduction
- Parametric warping
- Barycentric coordinates
- Interpolation
- MP6

Image Warping

image filtering: change range of image

$$g(x) = T(f(x))$$

image warping: change domain of image

Image Warping

image filtering: change range of image

$$g(x) = T(f(x))$$

image warping: change domain of image

$$g(x) = f(T(x))$$

Global parametric image warping

Examples of parametric warps:

translation

rotation

aspect

affine

perspective

cylindrical

Piecewise parametric image warping

- Define a mesh of small shape units: triangles/quadrangles
- Apply different transformations for different units

Non-parametric warping

- Move control points of a grid
- Use thin plate splines to produces a smooth vector field

Image morphing

File Edit View Movie Play Tools Help

Photoshop examples

Photoshop examples

Figure 9: Mona Lisa View Morph. Morphed view (center) is halfway between original image (left) and it's reflection (right).

Content

- Introduction
- Parametric warping
- Barycentric coordinates
- Interpolation
- MP6

Parametric image warping

Transformation T is a coordinate-changing machine:

What does it mean that T is parametric?

can be described by just a few numbers (parameters)

How to represent global and local transforms?

- Global: T Is the same for any point p in the image
- Local: T can be different at different location

Let's try to represent T as a matrix: p' = Mp

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

Scaling

Scaling operation:

$$x' = ax$$

$$y' = by$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix S

2-D Rotation

Shearing in x

- ☐ The y coordinates are unaffected, but the x coordinates are translated linearly with y
- That is

$$x' = x + sh_y * y$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_y \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Shearing in y

$$x' = x$$
$$y' = sh_x * x + y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ sh_x & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2x2 Matrices

What types of transformations can be represented with a 2x2 matrix?

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2x2 Matrices

What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$
NO!

Only linear 2D transformations can be represented with a 2x2 matrix

All 2D Linear Transformations

Linear transformations are combinations of ...

- Scale,
- Rotation,
- Shear, and
- Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Properties of linear transformations:

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Distance or length ratios are preserved on parallel lines
- Ratios of areas are preserved

Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$

$$y' = y + t_y$$

Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Using the rightmost column: Translation = $\begin{vmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{vmatrix}$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

Add a 3rd coordinate to every 2D point

- o (x, y, w) represents a point at location (x/w, y/w)
- (x, y, 0) represents a point at infinity
- (0, 0, 0) is not allowed
- Convenient coordinate system to represent many useful transformations
- (aw, bw, w) represent the same 2D point for any value of w

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Affine Transformations

Affine transformations are combinations of ...

- Linear 2D transformations, and
- Translations

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Length/distance ratios are preserved on parallel lines
- Ratios of areas are preserved

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_0 \\ b_1 & b_2 & b_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

Solution to Affine Warping

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_0 \\ b_1 & b_2 & b_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

The affine mapping function is represented by

$$x(u,v) = a_0 + a_1 u + a_2 v;$$
 $y(u,v) = b_0 + b_1 u + b_2 v.$

Using the predetermined feature point correspondence, we can set up two sets of equations

$$\begin{bmatrix} 1 & u_1 & v_1 \\ 1 & u_2 & v_2 \\ \dots & \dots & \dots \\ 1 & u_N & v_N \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_N \end{bmatrix} \text{ or } Aa = x, \begin{bmatrix} 1 & u_1 & v_1 \\ 1 & u_2 & v_2 \\ \dots & \dots & \dots \\ 1 & u_N & v_N \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix} \text{ or } Ab = y.$$

If N = 3, and matrix A is invertible, the solution is

$$a = A^{-1} x, b = A^{-1} y.$$

If N > 3, we have more equations then unknowns. The least square solution is

$$a = (A^T A)^{-1} A^T \mathbf{x}, b = (A^T A)^{-1} A^T \mathbf{y}.$$

If N = 3, and matrix A is not invertible, we would need to find more feature points.

"Triangle-wise" parametric image warping

- For each transformed image frame
 - Define a mesh of triangles
 - Find a affine transform from each triangle's vertices, apply it to other points inside the triangle
 - → Have to solve affine transforms at every frame

Content

- Introduction
- Parametric warping
- Barycentric coordinates
- Interpolation
- MP6

Affine warping for triangles

Barycentric Coordinates

For any (ζ, η) in the triangle, we have

or

$$\begin{bmatrix} \zeta \\ \eta \\ 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} \zeta_1 \\ \eta_1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} \zeta_2 \\ \eta_2 \\ 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} \zeta_3 \\ \eta_3 \\ 1 \end{bmatrix} = \begin{bmatrix} \zeta_1 & \zeta_2 & \zeta_3 \\ \eta_1 & \eta_2 & \eta_3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$$

Barycentric Coordinates

Fact

Assumption: homogeneous barycentric coordinate is invariant to affine transformation, thus P's corresponding point $P^*(x, y)$ can be represented as

$$x = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$$
$$y = \lambda_1 y_1 + \lambda_2 y_2 + \lambda_3 y_3.$$

with the same λ_i

$$\begin{bmatrix} \zeta \\ \eta \\ 1 \end{bmatrix} = \begin{bmatrix} \zeta_1 & \zeta_2 & \zeta_3 \\ \eta_1 & \eta_2 & \eta_3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = M \begin{bmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = M \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Content

- Introduction
- Parametric warping
- Barycentric coordinates
- Interpolation
- MP6

Image Warping Implementation I

Forward mapping:

```
for (int u = 0; u < umax; u++) {
  for (int v = 0; v < vmax; v++) {
    float x = f_x(u,v);
    float y = f_v(u,v);
    dst(x,y) = src(u,v);
            (u,v)
                                      (x, y)
                            Destination image
            Source image
```

Forward Mapping

Iterate over source image

Forward Mapping

Iterate over source image

Forward Mapping

 Iterate over source image Some destination pixels may not be covered Many source pixels can map to same destination pixel 0 0 0 0 0 0 Rotate 0 0 0 -30 0 0 0 u

Image Warping Implementation II

Reverse mapping:

```
for (int x = 0; x < xmax; x++) {
  for (int y = 0; y < ymax; y++) {
    float u = f_x^{-1}(x,y);
    float v = f_y^{-1}(x,y);
    dst(x,y) = src(u,v);
            (u,v)
                             Destination image
            Source image
```

Reverse Mapping

- Iterate over destination image
 - Must resample source
 - May oversample, but much simpler!

Resampling

Evaluate source image at arbitrary (u, v)

o (u, v) does not usually have integer coordinates

Some kinds of resampling

- Nearest neighbor
- Bilinear interpolation
- Gaussian filter

Nearest neighbor

Take value at closest pixel

```
int iu = trunc(u + 0.5);
int iv = trunc(v + 0.5);
dst(x, y) = src(iu, iv);
```

Simple, but causes aliasing

Bilinear interpolation

Bilinearly interpolate four surrounding pixels

```
a = linear interpolation of src(u_1, v_1) and src(u_2, v_1)
b = linear interpolation of src(u_1, v_2) and src(u_2, v_2)
dst(x, y) = linear interpolation of 'a' and 'b'
```


Gaussian Filter

Convolve with Gaussian filter

Width of Gaussian kernel affects bluriness

Image Warping Implementation II - with resampling

Reverse mapping:

```
for (int x = 0; x < xmax; x++) {
  for (int y = 0; y < ymax; y++) {
    float u = f_x^{-1}(x,y);
    float v = f_y^{-1}(x,y);
    dst(x,y) = resample src(u,v,w);
            (u,v)
                             Destination image
            Source image
```

Image Warping Implementation II – with Gaussian resampling

Reverse mapping:

```
for (int x = 0; x < xmax; x++) {
  for (int y = 0; y < ymax; y++) {
    float u = f_x^{-1}(x,y);
    float v = f_v^{-1}(x,y);
    dst(x,y) = resample src(u,v,w);
                             Destination image
            Source image
```

Content

- Introduction
- Parametric warping
- Barycentric coordinates
- Interpolation
- **MP**6

Warping in MP6

Warping

- For each triangle find the affine transform
- Apply it to the points inside
- Assign image value to the triangle points

Suggestions

- Barycentric coordinate
- Reverse mapping

Preview of MP6

