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Outline 
 Biological Inspirations 
 Applications & Properties of ANN 
 Perceptron 
 Multi-Layer Perceptrons 
 Error Backpropagation Algorithm 
 Remarks on ANN 



Biological Inspirations 
 Humans perform complex tasks like 

vision, motor control, or language 
understanding very well 

 One way to build intelligent machines is 
to try to imitate the (organizational 
principles of) human brain 



Biological Neuron 



Artificial Neural Networks 
 ANNs have been widely used in various 

domains for: 
◦ Pattern recognition  
◦ Function approximation 
◦ Etc. 



Perceptron (Artificial Neuron) 
 A perceptron 
◦  takes a vector of real-valued inputs 
◦ calculates a linear combination of the inputs 
◦ outputs +1 if the result is greater than some threshold and -1  

(or 0) otherwise 



Perceptron 
 To simplify notation, assume an 

additional constant input x0=1. We can 
write the perceptron function as 



Representational Power of Perceptron 

 The perceptron ~ a hyperplane decision 
surface in the n-dimensional space of 
instances 
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Boolean Functions 
 A single perceptron can be used to 

represent many boolean functions 
◦ 1 (true); 0 (false) 

 Perceptrons can represent all of the 
primitive boolean functions 
◦ AND, OR, NOT 



Implementing AND 
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Implementing OR 
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o(x1,x2) = 1 if –0.5 + x1 + x2 > 0 
              = 0 otherwise 



Implementing NOT 
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The XOR Function 
 Unfortunately, some Boolean functions cannot be 

represented by a single perceptron 
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There is no assignment of values to w0,w1 and w2 that 
satisfies above inequalities. XOR cannot be represented! 

XOR(x1,x2) 



Linear Seprability 

Representation Theorem: Perceptrons can only represent  
linearly separable functions. That is, the decision surface  
separating the output values has to be a plane.  
(Minsky & Papert, 1969) 

      Boolean AND       Boolean XOR 



Remarks on perceptron 
 Perceptrons can represent all the primitive 

Boolean functions  
◦ AND, OR, and NOT 

 Some Boolean functions cannot be 
represented by a single perceptron 
◦ Such as the XOR function 

 Every Boolean function can be represented 
by some combination of 
◦ AND, OR, and NOT 

 We want networks of the perceptrons… 



Implementing XOR by 
Multi-layer perceptron (MLP) 

OR 

NAND 

x1 XOR x2 = (x1 OR x2) AND (NOT(x1 AND x2)) 



Multi-Layer Perceptrons (MLP) 



Representation Power of MLP 
 Conjunction of piece-wise hyperplanes 



Representation Power of ANN 
 Boolean functions: Every Boolean function 

can be represented exactly by some network 
with two layers of units 

 Continuous functions: Every bounded 
continuous function can be approximated 
with arbitrarily small error (under a finite 
norm) by a network with two layers of units 

 Arbitrary functions:  Any function can be 
approximated to arbitrary accuracy by a 
network with three layers of units 



Neuron network design for  
non-closed form problem 

Training data {xi, yi} 

Training 
process 

Testing data x* 

Testing 
process 

Result y* 

Neuron network 



Definition of Training Error 
 Training error E: a function of weight 

vector over the training data set D 
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Gradient Descent 
 To reduce error E, update the weight 

vector w in the direction of steepest 
descent along the error surface 
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Gradient Descent 



Weight Update Rule 
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Gradient Descent Search Algorithm 

repeat 

 ∆w ← 0 

 for each training example <x, t(x)> 

  o(x)=w·x 

  for each wi 

   ∆wi ← ∆wi + η(t(x)-o(x))xi 

 for each wi 

  wi ← wi + ∆wi 

until (termination condition) 



Perceptron Learning Rule vs Delta Rule 
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The perceptron learning rule uses the output of the threshold function 
(either -1 or +1) for learning. 
The delta-rule uses the net output without further mapping into output 
values -1 or +1 



Perceptron Learning Algorithm 
 Guaranteed to converge within a finite 

time if the training data is linearly 
separable and η is sufficiently small 

 If the data are not linearly separable, 
convergence is not assured 



Feed-forward Networks 



Definition of Error for MLP 
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Output Layer’s Weight Update 
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Hidden Layer’s Weight Update 

 Error of hj ∝   
 Distribute error to 
 inputs proportional to weights 

 
 Similar to output layer: 
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Error Back-propagation 



Error Back Propagation Algorithm 
initialize all weights to small random numbers 
repeat 
 for each training example <x, t(x)> 
    for each hidden node  
    for each output node 
 
    for each output node’s weight  
    for each hidden node’s weight  
 
    for each hidden node’s weight  
 
    for each output node’s weight  
 
until (termination condition) 
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Generalization, Overfitting, etc. 
 Artificial neural networks with a large 

number of weights tend to overfit the 
training data 

 To increase generalization accuracy, use a 
validation set 
◦ Find the optimal number of perceptrons 
◦ Find the optimal number of training iterations 
 Stop when overfitting happens 



Generalization, Overfitting, etc. 
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