
Introduction to the
Introduction to
Artificial Neural Network

Vuong Le
with Hao Tang’s slides

Part of the content of the slides are from the Internet (possibly with modifications).
The lecturer does not claim any ownership in any of the content of these slides.

Outline
 Biological Inspirations
 Applications & Properties of ANN
 Perceptron
 Multi-Layer Perceptrons
 Error Backpropagation Algorithm
 Remarks on ANN

Biological Inspirations
 Humans perform complex tasks like

vision, motor control, or language
understanding very well

 One way to build intelligent machines is
to try to imitate the (organizational
principles of) human brain

Biological Neuron

Artificial Neural Networks
 ANNs have been widely used in various

domains for:
◦ Pattern recognition
◦ Function approximation
◦ Etc.

Perceptron (Artificial Neuron)
 A perceptron
◦ takes a vector of real-valued inputs
◦ calculates a linear combination of the inputs
◦ outputs +1 if the result is greater than some threshold and -1

(or 0) otherwise

Perceptron
 To simplify notation, assume an

additional constant input x0=1. We can
write the perceptron function as

Representational Power of Perceptron

 The perceptron ~ a hyperplane decision
surface in the n-dimensional space of
instances

+
+

+

+

-

-

-

-
<w1, w2>

X1

X2

Linearly separable data

Boolean Functions
 A single perceptron can be used to

represent many boolean functions
◦ 1 (true); 0 (false)

 Perceptrons can represent all of the
primitive boolean functions
◦ AND, OR, NOT

Implementing AND

x1

x2

∑ o(x1,x2)

otherwise 0
05.1 if 1),(2121

=
>++−= xxxxo

1

1

1

W=-1.5

Implementing OR

x1

x2

∑ o(x1,x2)

1

1

1

W=-0.5

o(x1,x2) = 1 if –0.5 + x1 + x2 > 0
 = 0 otherwise

Implementing NOT

x1 ∑ o(x1)
-1

W=0.5
1

otherwise 0
05.0 if 1)(11

=
>−= xxo

The XOR Function
 Unfortunately, some Boolean functions cannot be

represented by a single perceptron

1 x1 x2

o(x1,x2)

w0 w1
w2

011
001
010
000

210

210

210

210

≤⋅+⋅+
>⋅+⋅+
>⋅+⋅+
≤⋅+⋅+

www
www
www
www

There is no assignment of values to w0,w1 and w2 that
satisfies above inequalities. XOR cannot be represented!

XOR(x1,x2)

Linear Seprability

Representation Theorem: Perceptrons can only represent
linearly separable functions. That is, the decision surface
separating the output values has to be a plane.
(Minsky & Papert, 1969)

 Boolean AND Boolean XOR

Remarks on perceptron
 Perceptrons can represent all the primitive

Boolean functions
◦ AND, OR, and NOT

 Some Boolean functions cannot be
represented by a single perceptron
◦ Such as the XOR function

 Every Boolean function can be represented
by some combination of
◦ AND, OR, and NOT

 We want networks of the perceptrons…

Implementing XOR by
Multi-layer perceptron (MLP)

OR

NAND

x1 XOR x2 = (x1 OR x2) AND (NOT(x1 AND x2))

Multi-Layer Perceptrons (MLP)

Representation Power of MLP
 Conjunction of piece-wise hyperplanes

Representation Power of ANN
 Boolean functions: Every Boolean function

can be represented exactly by some network
with two layers of units

 Continuous functions: Every bounded
continuous function can be approximated
with arbitrarily small error (under a finite
norm) by a network with two layers of units

 Arbitrary functions: Any function can be
approximated to arbitrary accuracy by a
network with three layers of units

Neuron network design for
non-closed form problem

Training data {xi, yi}

Training
process

Testing data x*

Testing
process

Result y*

Neuron network

Definition of Training Error
 Training error E: a function of weight

vector over the training data set D

∑
∈

−≡
Dd

dd otwE 2)(
2
1)(

Unthresholded perceptron
or linear unit

Gradient Descent
 To reduce error E, update the weight

vector w in the direction of steepest
descent along the error surface









∂
∂

∂
∂

∂
∂

∂
∂

≡∇
nw

E
w
E

w
E

w
EwE ,,,,)(

210



))((wEww ∇−+← η

Gradient Descent

Weight Update Rule

))((wEww ∇−+← η

),(
i

ii w
Eww

∂
∂

−+← η

∑
∈

−−=
∂
∂

Dd
iddd

i

xot
w
E))((

Gradient Descent Search Algorithm

repeat

 ∆w ← 0

 for each training example <x, t(x)>

 o(x)=w·x

 for each wi

 ∆wi ← ∆wi + η(t(x)-o(x))xi

 for each wi

 wi ← wi + ∆wi

until (termination condition)

Perceptron Learning Rule vs Delta Rule

iii www ∆+←

ii xotw)(−=∆ η
Perceptron learning rule

iii www ∆+←

ii xotw)(−=∆ η
Delta rule

The perceptron learning rule uses the output of the threshold function
(either -1 or +1) for learning.
The delta-rule uses the net output without further mapping into output
values -1 or +1

Perceptron Learning Algorithm
 Guaranteed to converge within a finite

time if the training data is linearly
separable and η is sufficiently small

 If the data are not linearly separable,
convergence is not assured

Feed-forward Networks

Definition of Error for MLP

() ()()∑∑
∈

−≡
Dd i

d
i

d
i otwE

2

2
1)(

() () () () ()












∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

≡∇ h
ij

hhoo w
E

w
E

w
E

w
E

w
EwE ,,,,,,)(

12111211



())(wEww ∇−+← η

Output Layer’s Weight Update
()

()

() jiiii

ij

m
mim

ii

ii

m
mimiii

ij

i

i

i

i

ij

m
mimi

ij

l m
mlml

ij

l
ll

d
ij

d

hooot
w

hw
e

o

ot

hwand
e

o
w

o
o
E

w

hwt

w

hwt

w

ot

w
E

i

i

)1(

1
1

2
1

1
1)(

2
1

)(

2
1

2

2

2
1
2

2

)(

)(

−−−=

∂









∂

∂






+

∂

∂





 −∂

=

=
+

=Θ=
∂
∂

∂
∂

∂
∂

=

∂

















Θ−∂

=

∂









Θ−∂

=

∂

−∂
=

∂
∂

∑

∑

∑

∑ ∑

∑

−

−

σ

σσσ
σ

σ

σ

Hidden Layer’s Weight Update

 Error of hj ∝
 Distribute error to
 inputs proportional to weights

 Similar to output layer:

∑∂
∂

i
ij

ij

w
w
E

() ()[]∑ −−−−=
∂
∂

i
kjjijiiii

jk

xhhwooot
w
E)1(1

Error Back-propagation

Error Back Propagation Algorithm
initialize all weights to small random numbers
repeat
 for each training example <x, t(x)>
 for each hidden node
 for each output node

 for each output node’s weight
 for each hidden node’s weight

 for each hidden node’s weight

 for each output node’s weight

until (termination condition)

∑Θ←
k

kjkj xwh)(

)(∑Θ←
j

jiji hwo

∑ −−−−=∂∂
i

kjjijiiiijk xhhwotoowE)1(]))(1([/

ij
ijij w

Eww
∂
∂

−← η

jk
jkjk w

Eww
∂
∂

−← η

jiiiiij hotoowE))(1(/ −−−=∂∂

Generalization, Overfitting, etc.
 Artificial neural networks with a large

number of weights tend to overfit the
training data

 To increase generalization accuracy, use a
validation set
◦ Find the optimal number of perceptrons
◦ Find the optimal number of training iterations
 Stop when overfitting happens

Generalization, Overfitting, etc.

	Introduction to the�Introduction to �Artificial Neural Network
	Outline
	Biological Inspirations
	Biological Neuron
	Artificial Neural Networks
	Perceptron (Artificial Neuron)
	Perceptron
	Representational Power of Perceptron
	Boolean Functions
	Implementing AND
	Implementing OR
	Implementing NOT
	The XOR Function
	Linear Seprability
	Remarks on perceptron
	Implementing XOR by�Multi-layer perceptron (MLP)
	Multi-Layer Perceptrons (MLP)
	Representation Power of MLP
	Representation Power of ANN
	Neuron network design for �non-closed form problem
	Definition of Training Error
	Gradient Descent
	Gradient Descent
	Weight Update Rule
	Gradient Descent Search Algorithm
	Perceptron Learning Rule vs Delta Rule
	Perceptron Learning Algorithm
	Feed-forward Networks
	Definition of Error for MLP
	Output Layer’s Weight Update
	Hidden Layer’s Weight Update
	Error Back Propagation Algorithm
	Generalization, Overfitting, etc.
	Generalization, Overfitting, etc.

