
ECE 417 Lecture 20:
MP5 Walkthrough

10/31/2019

Outline

• Background things that are done for you
• Observations: mel-frequency cepstral coefficients (MFCC)
• Token to type alignment

• Gaussian surprisal: set_surprisal
• Scaled Forward-Backward Algorithm: set_alphahat, set_betahat
• E-step: set_gamma, set_xi
• M-step: set_mu, set_var, set_tpm

Done for you: Mel Frequency Cepstral
Coefficients (MFCC)
What you need to know:
• MFCC is a low-dimensional vector (13 dimensions) that keeps most of

the speech-relevant information from the MSTFT (magnitude short-
time Fourier transform, 257 dimensions).

What you don’t need to know, but here’s the information in case you’re
interested: How it’s done.

1. Compute the MSTFT, 𝑋[𝑡, 𝑘] = 𝑋(𝑒
*+,-.

2. Modify the frequency scale (human perception of pitch).
3. Take the logarithm (human perception of loudness).
4. Take the DCT (approximately decorrelates the features).

What frequency scale do
people hear?

Inner ear

Basilar membrane
of the cochlea = a
bank of mechanical
bandpass filters

Mel-scale

• The experiment:
• Play tones A, B, C
• Let the user adjust tone D until pitch(D)-pitch(C) sounds the same as pitch(B)-

pitch(A)

• Analysis: create a frequency scale m(f) such that m(D)-m(C) = m(B)-
m(A)

• Result: 𝑚 𝑓 = 2595 log78 1 + ;
<88

Mel-scale filterbanks
• Define filters such that

each filter has a width
equal to about 200 mels
• As a function of Hertz:

narrow filters at low
frequency, wider at high
frequency

Mel-frequency filterbank features
Suppose X is a matrix representing the MSTFT, 𝑋[𝑡, 𝑘] = |𝑋((𝑒

*+,-.)|.
We can compute the filterbank features as 𝐹 = 𝑋𝐻, where H is the
matrix of bandpass filters shown here:

MSTFT, 𝑋
(an NFRAMESx257 matrix)

Triangle filters, 𝐻
(a 257x24 matrix)

Filterbank features, 𝐹 = 𝑋𝐻
(an NFRAMESx24 matrix)

=×

How can we decorrelate the
features?

Answer: DCT!

Remember, the 2D DCT looked like this…

cos
𝜋𝑘7 𝑛7 +

1
2

𝑁7
cos

𝜋𝑘H 𝑛H +
1
2

𝑁H

With a 36th order DCT (up to k1=5,k2=5), we
can get a bit more detail about the image.

The 1D DCT looks like this:
Suppose F is a matrix representing the mel-scale filterbank features, 𝐹 =
𝑋𝐻. We can compute the mel-frequency cepstral coefficients
(MFCC) as 𝑀 = ln 𝐹 𝑇, where T is the DCT matrix:

DCT matrix, 𝑇
(a 24x13 matrix)

Log Filterbank features, ln𝐹
(an NFRAMESx24 matrix)

=×

MFCC, M = ln 𝐹 𝑇
(an NFRAMESx13 matrix)

DCT works like PCA!! That’s why we use it.
• Filterbank features (left): neighboring frequency bands are highly correlated.
• MFCC (right): different cepstral coefficients are nearly uncorrelated.

DCT matrix, 𝑇
(a 24x13 matrix)

Log Filterbank features, ln𝐹
(an NFRAMESx24 matrix)

=×

MFCC, M = ln 𝐹 𝑇
(an NFRAMESx13 matrix)

Outline

• Background things that are done for you
• Observations: mel-frequency cepstral coefficients = f(MSTFT)
• Token to type alignment

• Gaussian surprisal, a.k.a. information: set_surprisal
• Scaled Forward-Backward Algorithm: set_alphahat, set_betahat
• E-step: set_gamma, set_xi
• M-step: set_mu, set_var, set_tpm

Token-to-type alignment
• We talked about it a great deal in Tuesday’s lecture.
• Here’s the code that does it:

• self.model[‘phones’] = ' aelmnoruøǁɘɤɨɯɵɹɺɾʉʘʙ’
• self.tok2type = [str.find(self.model['phones'],x) for x in self.toks]

This defines the types
(distinct phones that are
present in the training
data)

This creates an array
tok2type:tok→type

This code cuts out the
tok2type array for a
particular utterance, u,
and then computes:
• mu: matrix of mean

vectors
• var: matrix of variance

vectors
• A: transition

probabilities among
the tokens of the
utterance

Outline

• Background things that are done for you
• Observations: mel-frequency cepstral coefficients = f(MSTFT)
• Token to type alignment

• Gaussian surprisal, a.k.a. information: set_surprisal
• Scaled Forward-Backward Algorithm: set_alphahat, set_betahat
• E-step: set_gamma, set_xi
• M-step: set_mu, set_var, set_tpm

Independent events: Diagonal covariance
Gaussian
Suppose that 𝑜⃗ = 𝑜7,…, 𝑜P is a D-dimensional observation vector, and
the observation dimensions are uncorrelated (e.g., MFCC). Then we
can write the Gaussian pdf as

𝑏* 𝑜⃗ =
1

2𝜋Σ*
𝑒S

7
H TSUV

W
XV
YZ TSUV =[

\]7

P
1

2𝜋𝜎*\H
𝑒
S7H

T_SUV_
+

`V_
+

Complexity of inverting a DxD
matrix: 𝑂{𝐷d}

One scalar operation for each
of the D dimensions:
Complexity = 𝑂{𝐷}

Claude Shannon, “A Mathematical Theory of
Communication,” 1948
1. An event is informative if it is unexpected. The information content of an event, e, must
be some (as yet unknown) monotonically decreasing function, f(), of its probability:

𝑖(𝑒) = 𝑓(𝑝(𝑒))

2. The information provided by two independent events, 𝑒7 and 𝑒H, is the sum of the
information provided by each:

𝑖(𝑒7, 𝑒H) = 𝑖(𝑒7) + 𝑖(𝑒H)

There is only one function, f(), that satisfies both of these criteria:

𝑖 𝑒 = −log𝑝(𝑒)
𝑖 𝑒7, 𝑒H = −log𝑝 𝑒7 𝑝 𝑒H = −log𝑝 𝑒7 − log𝑝 𝑒H = 𝑖(𝑒7) + 𝑖(𝑒H)

Surprisal

The “information” provided by observation 𝑜⃗ is 𝑖 𝑜⃗ = − log 𝑝(𝑜⃗).

But the word “information” has been used for so many purposes that
we hesitate to stick with it. There is a more technical-sounding word
that is used only for this purpose: “surprisal.”

𝑖 𝑜⃗ = − log 𝑝(𝑜⃗) is the “surprisal” of observation 𝑜⃗, because it
measures the degree to which we are surprised to observe 𝑜⃗.
• If 𝑜⃗ is very likely (𝑝(𝑜⃗) ≈ 1) then we are not surprised (𝑖(𝑜⃗) ≈ 0).
• If 𝑜⃗ is very unlikely (𝑝(𝑜⃗) ≈ 0), then we are very surprised (𝑖(𝑜⃗) ≈ ∞).

Gaussian is computationally efficient, but numerically AWFUL!!

10d observation vector

Gaussian probability

Surprisal

Observations: reasonable
numbers, easy to work
with in floating point

Probability densities:
Unreasonable numbers,
very hard to work
with in floating point!

Surprisal: reasonable
numbers, easy to work
with in floating point

WARNING: Don’t calculate surprisal using the method on this slide!!!
Use the method on the next slide!!!

How to calculate surprisal without calculating
probability first

𝑖* 𝑜⃗ = − ln 𝑏* 𝑜⃗ = − ln[
\]7

P
1

2𝜋𝜎*\H
𝑒
S7H

T_SUV_
+

`V_
+

=
1
2
l
\]7

P
𝑜\ − 𝜇*\

H

𝜎*\H
+ ln 2𝜋𝜎*\H

MP5 walkthrough: what surprisal looks like
(after 1 epoch of training)

• Dark blue: small surprise
• Silence model during silences:

zero surprise
• Vowel model during vowels:

zero surprise

• Bright green: large surprise
• Vowel model during silences:

high surprise
• Silence model during vowels:

high surprise

Outline

• Background things that are done for you
• Observations: mel-frequency cepstral coefficients = f(MSTFT)
• Token to type alignment

• Gaussian surprisal, a.k.a. information: set_surprisal
• Scaled Forward-Backward Algorithm: set_alphahat, set_betahat
• E-step: set_gamma, set_xi
• M-step: set_mu, set_var, set_tpm

Forward-Backward Algorithm

𝛼(𝑗 = l
p]7

q

𝛼(S7 𝑖 𝑎p*𝑏* 𝑜⃗(= l
p]7

q

𝛼(S7 𝑖 𝑎p*𝑒SpV Ts

Oh NO! The very small number came back again!

Solution: Scaled Forward-Backward

• The key idea: define a scaled alpha probability, alphahat (t𝛼(𝑗), such
that

l
*]7

q

t𝛼(𝑗 = 1

• We can compute alphahat simply as

t𝛼(𝑗 =
∑p]7q t𝛼(S7 𝑖 𝑎p*𝑒SpV Ts

∑*]7q ∑p]7q t𝛼(S7 𝑖 𝑎p*𝑒SpV Ts

Solution: Scaled Forward-Backward

• Similarlym define a scaled betahat (v𝛽(𝑖), such that

l
p]7

q

v𝛽(𝑖 = 1

• We can compute betahat simply as

v𝛽(𝑖 =
∑*]7q 𝑎p*𝑒SpV TsxZ v𝛽(y7 𝑗

∑p]7q ∑*]7q 𝑎p*𝑒SpV TsxZ v𝛽(y7 𝑗

MP5 Walkthrough: What alphahat and
betahat look like

Why does scaling work?

Notice that the denominator is independent of 𝑖 or 𝑗. So the difference
between 𝛼(𝑗 and t𝛼(𝑗 is a scaling factor (let’s call it 𝑔() that doesn’t
depend on 𝑗:

t𝛼(𝑗 =
1
𝑔(
l
p]7

q

t𝛼(S7 𝑖 𝑎p*𝑒SpV Ts = ⋯ =
𝛼(𝑗
∏}]7
(𝑔}

Likewise, the difference between 𝛽(𝑖 and v𝛽(𝑖 is some other scaling
factor (let’s call it ℎ() that doesn’t depend on 𝑖:

v𝛽(𝑖 =
1
ℎ(
l
*]7

q

𝑎p*𝑒SpV TsxZ v𝛽(y7 𝑗 = ⋯ =
𝛽(𝑖

∏}](y7
� ℎ}

Why does scaling work?

So we can calculate gamma as:

𝛾(𝑗 =
𝛼(𝑗 𝛽(𝑗

∑�]7q 𝛼(𝑘 𝛽(𝑘
=

𝛼(𝑗 𝛽(𝑗 /∏}]7
(𝑔} ∏}](y7

� ℎ}
∑�]7q 𝛼(𝑘 𝛽(𝑘 /∏}]7

(𝑔} ∏}](y7
� ℎ}

=
t𝛼(𝑗 v𝛽(𝑗

∑�]7q t𝛼(𝑘 v𝛽(𝑘

In other words, the scaling (of the scaled forward-backward algorithm)
has no effect at all on the calculation of gamma and xi!!

Outline

• Background things that are done for you
• Observations: mel-frequency cepstral coefficients = f(MSTFT)
• Token to type alignment

• Gaussian surprisal, a.k.a. information: set_surprisal
• Scaled Forward-Backward Algorithm: set_alphahat, set_betahat
• E-step: set_gamma, set_xi
• M-step: set_mu, set_var, set_tpm

E-Step: set_gamma, set_xi

In other words, the scaling (of the scaled forward-backward algorithm)
has no effect at all on the calculation of gamma and xi!!

𝛾(𝑗 =
t𝛼(𝑗 v𝛽(𝑗

∑�]7q t𝛼(𝑘 v𝛽(𝑘

𝜉(𝑖, 𝑗 =
t𝛼(𝑖 𝑎p*𝑒SpV TsxZ v𝛽(y7 𝑗

∑�]7q ∑�]7q t𝛼(𝑘 𝑎��𝑒Sp� TsxZ v𝛽(y7 𝑙

MP5 Walkthrough: What gamma and xi look
like

Outline

• Background things that are done for you
• Observations: mel-frequency cepstral coefficients = f(MSTFT)
• Token to type alignment

• Gaussian surprisal, a.k.a. information: set_surprisal
• Scaled Forward-Backward Algorithm: set_alphahat, set_betahat
• E-step: set_gamma, set_xi
• M-step: set_mu, set_var, set_tpm

M-Step: set_mu, set_var, set_tpm

𝜇� =
∑�]7� ∑(]7� ∑*:(��� *]� 𝛾(𝑗 𝑜⃗(
∑�]7� ∑(]7� ∑*:(��� *]� 𝛾(𝑗

𝜎⃗�H =
∑�]7� ∑(]7� ∑*:(��� *]� 𝛾(𝑗 𝑜⃗(− 𝜇� H

∑�]7� ∑(]7� ∑*:(��� *]� 𝛾(𝑗

𝑇𝑃𝑀(𝑚, 𝑛) =
∑�]7� ∑(]7� ∑p,*:(��� p,*](�,�) 𝜉(𝑖, 𝑗
∑�]7� ∑(]7� ∑p,*:(��� p](�) 𝜉(𝑖, 𝑗

Define the following index variables:
• 𝑢 =Utterance ID
• 𝑡 =Frame number
• 𝑖, 𝑗 =Token indices
• 𝑚, 𝑛 =Type indices

And, for convenience,
• 𝜎⃗�H =Variance vector for the m’th type
• 𝑇𝑃𝑀(𝑚, 𝑛) =Transition probability

from type m to type n

MP5 Walkthrough: What mu and var look like

MP5 Walkthrough: What TPM looks like

Conclusions
• Step 0, set_surprisal: use the formula on slide 22 to compute 𝑖* 𝑜⃗

directly, without computing 𝑏* 𝑜⃗
• Steps 1 and 2, set_alphahat and set_betahat: use the formulas on

slides 26 and 27, this allows you to immediately normalize alphahat
and betahat so that they each sum to 1.
• Steps 3 and 4, set_gamma and set_xi: use the formulas on slide 32,

you get 𝛾(𝑗 and 𝜉(𝑖, 𝑗 directly from t𝛼(𝑖 and v𝛽(y7 𝑗 , despite the
scaling!
• Steps 5-7, set_mu, set_var, and set_tpm: use the formulas on slide

35, the only trick is that you have to be careful about token-to-type
mapping.

… and the final speech recognition result: How
well did it work? About 90% accurate!
(testing on the training data, though!)

