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Outline

• Today:

• Integral Image

• Scalar Classifier

• Adaboost

• Thursday:

• Walk-through of MP6 with matlab open on screen

• Some background theory of adaboost



AVICAR database
rects.txt:

12 rectangles per line: lips, face, 

other

4 ints/rectangle: 

[xmin,ymin,width,height]

showrects.m plots

Yellow: lips (first 4/line)

Cyan: face (next 4/line)

Red: other (next 4/line)

MP:

Discriminate face vs. other



Grayscale image
i = sum(a,3);

imagesc(i);



Integral image

�� �, � = � � ��, �′
	
�	,�
��

ii = cumsum(cumsum(i,2),1);

imagesc(ii);



Scalar features: subrectangles
The small cyan rectangle is a sub-

rectangle of the big cyan rectangle.

Small rectangle: r’=[xm’,ym’,w’,h’]

Big rectangle: r=[xm,ym,w,h]

Relationship:

xm’ = xm + fx*w

ym’ = ym + fy*h

w’ = fw*w

h’ = fh*h

The “fractional subrectangle” is

fr = [fx,fy,fw,fh]=[1,1,4,1]/6;   



Efficiently computing the sum
The sum within the subrectangle is:

sum(open pixels) –

sum(/// pixels) –

sum(\\\ pixels) + 

sum(### pixels)

The last term is necessary because, 

by subtracting the two previous 

terms, we have subtracted the ### 

pixels twice; it is necessary to 

compensate.



Efficiently computing the sum
In the integral image, each point is 

a sum!  Thus the feature we want is 

just

ii(y2,x2) –

ii(y1,x2) –

ii(y2,x1) +

ii(y1,x1)



Other useful features: order 2, horizontal
Feature f(x;fr,q=2,v=0)

An order-2 horizontal feature is the 

sum of the right half, minus the 

sum of the left half.



Other useful features: order 2, vertical
Feature f(x;fr,q=2,v=1)

An order-2 vertical feature is the 

sum of the bottom half, minus the 

sum of the top half.



Other useful features: order 3, horizontal
Feature f(x;fr,q=3,v=0)

An order-3 horizontal feature is the 

sum of the outer thirds, minus the 

sum of the middle third.



Other useful features: order 3, vertical
Feature f(x;fr,q=3,v=1)

An order-3 vertical feature is the 

sum of the outer thirds, minus the 

sum of the middle third.



Other useful features: order 4
Feature f(x;fr,q=4)

An order-4 feature is the sum of the 

main diagonal quadrants, minus the 

sum of the off-diagonal quadrants.



Scalar Classifier

ℎ �; ��, �, �, �, � =  �1      � � �; ��, �, � < � �0                       ��ℎ������
In other words, the p=1 classifier is given by

ℎ �; ��, �, �, � = 1, � =  �1      � �; ��, �, � < �0                   ��ℎ������
And the p=-1 classifier is given by

ℎ �; ��, �, �, � = −1, � =  �1      � �; ��, �, � ≥ �0                  ��ℎ������



How to find fx,fy,fw,fh,q,v:
Exhaustive search!!!!!!
for ix=0:5,

for iy=0:5,

for iw=1:(6-ix),

for ih=1:(6-iy),

<fr = [ix,iy,iw,ih]/6>

<compute subrectangle from rectangle>

for q=1:4,

for v=0:1,

<compute features>

<find the p,ϴ that give the lowest weighted error>

<compare it with the best so far, and save it if it’s better>

end; end; end; end; end; end



How to find p,Ѳ: find the minimum error
First plot: feature values for one 

particular feature, computed from 

all 126 training images, from 8 

rectangles/image.

Second plot: 

w(t,i) = weight of the i’th training 

rectangle during the t’th iteration 

of training. 

w(1,i) = 1/(126*8)=1/1008

Third plot:  class labels

y=1: face rectangle

y=0: non-face rectangle



“Signed weight” = weight times “sign” of label
First plot: same as before.

Second plot: 

w(t,i)*(2*y(i)-1).  Call this the 

“signed weight.”

If w(t,i) is like the probability of 

choosing the i’th token,

Then

� � �, � (2� � − 1)
$= Pr ' = 1 − Pr ' = 0



“Signed weight” = weight times “sign” of label
First plot: 

[f,isort] = sort(f);

plot(1:1008,f);

Second plot:

w = w(isort);

y = y(isort);

plot(1:1008,w.*(2*y-1));



Finding the best scalar classifier out of a set 
containing tens of thousands of possible scalar 
classifiers: what I’ve shown you so far.
1. For every possible feature (fx,fy,fw,fh,q,v),

2. … compute the feature for the whole database…

3. … sort the feature, f, in ascending order.  Now you have an ordered list of 
all of the possible “threshold values” that make sense.  
1. The classifier checks whether or not f(x)<Ѳ
2. Suppose that the features are sorted so that f(1)<f(2)<f(3) and so on.  Then, as Ѳ

varies from f(i)≤ϴ<f(i+1), the values of the classifier h(x) don’t change.
3. So the only values of Ѳ that are meaningful are ϴ=f(i) for some index i.  In other 

words, we should just pick Ѳ equal to one of the training tokens --- whichever one 
minimizes the probability of error.

4. … re-arrange w and y into the same order as f, using w(isort) and y(isort).  
Remember that w(i) is the “probability” of the i’th token, and y(i) is its 
label.  So from this information, we can compute the probability of error.  
Let’s examine this… 



Detailed Analysis: the different types of error 
probabilities

The a priori class probabilities are:
56 = Pr � = 1 = � �(�, �)

$:� $ 76
58 = Pr � = 0 = � �(�, �)

$:� $ 78
The different types of error probabilities are:

9:; = Pr � = 0, ℎ(�) = 1 false accept (false alarm) probability

9<; = Pr � = 1, ℎ(�) = 1 true accept probability

9:= = Pr � = 1, ℎ(�) = 0 = 56 − 9<; false reject (miss) probability

9<= = Pr � = 0, ℎ(�) = 0 = 58 − 9:; true reject probability



Scalar Classifier: Error Probabilities

� �; ��, �, �, �, � =  �1      � � �; ��, �, � < � �0                         ��ℎ������
So 9� � < ϴ, � = 0 = 9:; ϴ, � = 1 = 9<=(ϴ, � = −1)

9� � < ϴ, � = 1 = 9<; ϴ, � = 1 = 9:=(ϴ, � = −1)



Pr(x< ϴ,y=1) and P(x<ϴ,y=0), every possible ϴ
First plot: 

[f,isort] = sort(f);

plot(1:1008,f);

Second plot:

cumsum(max(0,w.*(2*y-1)));

Sums up probs of y==1 tokens with 

feature less than or equal to theta

Third plot:

cumsum(max(0,w.*(1-2*y)));

Sums up probs of y==0 tokens with 

feature less than or equal to theta



Detailed Analysis: the different types of error 
probabilities

Probability of Error depends on polarity and theta:9> � = 1, � = Pr (� < �, � = 0) + Pr (� > �, � = 1)= 56 − Δ9(�)
9> � = −1, � = Pr (� > �, � = 0) + Pr (� < �, � = 1)= 58 + Δ9 �

… but both of them are just …Δ9 � = 9� � < ϴ, � = 1 − 9� � < ϴ, � = 0



Probability of error, for every possible theta
Second and third plots: same as 

before.

First plot:

Probability of error, as a function of 

theta, for polarity p=-1

PE = pi0 + DeltaP

If the minimum in this curve is less 

than the minimum of pi1 – DeltaP, 

then p=-1 is best.



Recap: finding the best scalar classifier out of a set 
containing tens of thousands of possible scalar 
classifiers
1. For every possible feature (fx,fy,fw,fh,q,v),

2. … compute the feature for the whole database…

3. … sort the feature, f, in ascending order.  Now you have an ordered list of 
all of the possible “threshold values” that make sense

4. … re-arrange w and y into the same order as f.  Now, using cumsum, you 
can quickly find the probability of error for any given “threshold value” 
and “polarity.”

5. … find [pmin1,imin1]=min(pi1-DeltaP) and 
[pmin0,imin0]=min(pi0+DeltaP).  If pmin1 is smaller, then f(imin1) is the 
threshold, and p=1 is the polarity.  Otherwise f(imin0) is the threshold, 
and p=-1 is the polarity.

6. … if the answer to #5 is the best one you’ve found so far, keep it.



Adaboost

Suppose somebody told you: I’m going to take a whole bunch of scalar 
classifiers.  Let’s use ℎB � to mean the classifier computed in the t’th
training iteration; remember that ℎB � is either 0 or 1.  Then I’m going 
to add them all together, and the final classifier will be 

ℎ � =
1   �� � CB(2ℎB � − 1)  > 0

B

0   �� � CB(2ℎB � − 1) < 0
B

How would you choose the classifiers?  How would you choose CB?



(1)  Which scalar classifiers should you 
choose?

• At each training iteration, you have “weights” w(t,i) that tell you the 
importance of the i’th training token.

• The probability of error is the sum of w(t,i), over all tokens for which 
the classifier is wrong.

• Choose the classifier with minimum probability of error.

• Now you want the (t+1)st classifier to “fix” the errors made by the 
(t)th classifier.

• So for every token that ht(x) got wrong, you make w(t+1,i)>w(t,i)

• … and for every token that ht(x) got right, you make w(t,i)<w(t+1,i)



(1)  Which scalar classifiers should you 
choose?
• If the probability of error is always less than ½, the goals on the previous slide can 

be met by choosing w(t+1,i) so that

� �(� + 1, �)
$∶ EF 	  GHIJK

= � �(� + 1, �)
$: EF 	  H$KEB

We can do this by, first, changing only the ones ℎB � got _right_, to

�L � + �, � = 9>
1 − 9>

�(�, �)

And then renormalizing, � � + �, � =�L � + �, � / ∑ �L � + �, OP



(2)  What are the CB?

• We generally want to give more weight to classifiers that have a lower 
probability of error.  So we want CB to be a monotonically decreasing 
function of 9>.    

• In fact, traditional logic would say that we only pick the _one_ 
classifier with the _lowest_ 9>.

• We’re not going to do that.  We want the ones with higher 9> to hang 
around, so that they can fix the few errors that the other ones can’t 
fix.  But we’re going to _really_ scale them down.  In fact, we’ll 
_exponentially_ scale them down, like this:

CB = − log( 9>
1 − 9>

)



(2)  What are the CB?

CB = − log( 9>
1 − 9>

)
Notice some nice properties:

• CB = 0 if 9> = 0.5.   So if your training ever gets to the point where it’s 
impossible to find any more classifiers with error less than 50%, that’s OK!  
The CB for those classifiers will be automatically set to 0.  

• CB > 0 if 9> < 0.5.

• CB = ∞ if 9> = 0.  So if you somehow find a classifier that gets every token 
correct, then Adaboost will only use that classifier --- none of the others will 
matter.

• This formula has other nice properties that I’m not going to talk about today, 
because you don’t need to know them for either the exam or the MP.  But 
trust me, it’s pretty cool.



MP6 recap

• For every training iteration t=1:40,…

• for every possible feature,…

• Compute that feature for every training token in the database.

• Find the Ѳ and p that minimize the weighted error.

• If this feature gives a better classifier than any so far, keep it.

• end

• alpha(t) = -log(PE(t)/(1-PE(t)))

• end

• Now your complete classifier is sum(alpha(t)(2*h(t,x)-1)).  Test this 
completed classifier on the testing data.


