
Image filtering and image
features
September 26, 2019

Outline: Image filtering and image features

• Images as signals
• Color spaces and color features
• 2D convolution
• Matched filters
• Gradient filters
• Separable convolution
• Accuracy spectrum of a 1-feature classifier

Images as signals

• x[n1,n2,c] = intensity in row n1, column
n2, color plane c.

• Most image formats (e.g., JPG, PNG, GIF,
PPM) distribute images with three color
planes: Red, Green, and Blue (RGB)

• In this example (Arnold
Schwarzenegger’s face), the grayscale
image was created as

�̅� 𝑛$, 𝑛& =
1
3 *
+∈{.,/,0}

𝑥 𝑛$, 𝑛&, 𝑐

n1

n2

Color spaces: RGB
• Every natural object reflects a

continuous spectrum of colors.
• However, the human eye only has three

color sensors:
• Red cones are sensitive to lower

frequencies
• Green cones are sensitive to intermediate

frequencies
• Blue cones are sensitive to higher

frequencies
• By activating LED or other display

hardware at just three discrete colors (R,
G, and B), it is possible to fool the
human eye into thinking that it sees a
continuum of colors.

• Therefore, most image file formats only
code three discrete colors (RGB).

Illustration from Anatomy &
Physiology, Connexions Web site.
http://cnx.org/content/col11496/1.
6/, Jun 19, 2013.

http://cnx.org/content/col11496/1.6/

Color features: Luminance

• The “grayscale” image is often computed as the average of R, G, and B
intensities, i.e., �̅� 𝑛$, 𝑛& = $

3
∑+∈{.,/,0} 𝑥 𝑛$, 𝑛&, 𝑐 .

• The human eye, on the other hand, is more sensitive to green light than to
either red or blue.

• The intensity of light, as viewed by the human eye, is well approximated by
the standard ITU-R BT.601:

𝑥 𝑛$, 𝑛&, 𝑌 = 0.299𝑥 𝑛$, 𝑛&, 𝑅 + 0.587𝑥 𝑛$, 𝑛&, 𝐺 + 0.114𝑥 𝑛$, 𝑛&, 𝐵

• This signal (𝑥 𝑛$, 𝑛&, 𝑌) is called the luminance of light at pixel 𝑛$, 𝑛& .

Color features: Chrominance

• Chrominance = color-shift of the image.
• We measure 𝑃.=red-shift, and 𝑃0=blue-shift, relative to

luminance (luminance is sort of green-based,
remember?)

• We want 𝑃. 𝑛$, 𝑛& and 𝑃0 𝑛$, 𝑛& to describe only the
color-shift of the pixel, not its average luminance.

• We do that using

𝑌
𝑃0
𝑃.

=
�⃗�E
�⃗�0
�⃗�.

𝑅
𝐺
𝐵

Where 𝑠𝑢𝑚(�⃗�.) = 𝑠𝑢𝑚(�⃗�0) = 0.

Cr and Cb, at Y=0.5
Simon A. Eugster, own work.

Color features: Chrominance

𝑌
𝑃0
𝑃.
=

0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

𝑅
𝐺
𝐵

gives 𝑠𝑢𝑚(�⃗�.) = 𝑠𝑢𝑚(�⃗�0) = 0.

Color features: Chrominance

• Some images are obviously red!
(e.g., fire, or wood)

• Some images are obviously blue!
(e.g., water, or sky)

• Average(Pb)-Average(Pr) should be
a good feature for distinguishing
between, for example, ”fire” versus
“water”

Color features: norms
• The average Pb value is M𝑃0 =

$
NONP

∑QORS
NOT$∑QPRS

NPT$ 𝑃0 𝑛$, 𝑛& .
• The problem with this feature is that it gives too much weight to small values of 𝑃0 𝑛$, 𝑛& ,

i.e., some pixels might not be all that bluish – as a result, some “water” images have low
average-pooled Pb.

• The max Pb value is U𝑃0 = max
QO

max
QP

𝑃0 𝑛$, 𝑛& .
• The problem with this feature is that it gives too much weight to LARGE values of 𝑃0 𝑛$, 𝑛& ,

i.e., in the “fire” image, there might be one or two pixels that are blue, even though all of the
others are red --- as a result, some “fire” images might have an unreasonably high max-
pooled Pb.

• The Frobenius norm is 𝑃0 = ∑QORS
NOT$∑QPRS

NPT$ 𝑃0& 𝑛$, 𝑛&
$/&

• The Frobenius norm emphasizes large values, but it doesn’t just depend on the LARGEST
value – it tends to resemble an average of the largest values.

• In MP3, Frobenius norm seems to be work better than max-pooling or average-
pooling. For other image processing problems, you might want to use average-
pooling or max-pooling instead.

Outline: Image filtering and image features

• Images as signals
• Color spaces and color features
• 2D convolution
• Matched filters
• Gradient filters
• Separable convolution
• Accuracy spectrum of a 1-feature classifier

2D convolution
The 2D convolution is just like a 1D convolution, but in two dimensions.

𝑥 𝑛$, 𝑛&, 𝑐 ∗∗ ℎ 𝑛$, 𝑛&, 𝑐 = *
\ORS

NOT$

*
\PRS

NPT$

𝑥 𝑚$,𝑚&, 𝑐 ℎ 𝑛$ − 𝑚$, 𝑛& − 𝑚&, 𝑐

Note that we don’t convolve over the color plane – just over the rows and
columns.

Full, Valid, and Same-size convolution outputs

𝑦 𝑛$, 𝑛&, 𝑐 = *
\ORS

NOT$

*
\PRS

NPT$

𝑥 𝑚$,𝑚&, 𝑐 ℎ 𝑛$ −𝑚$, 𝑛& −𝑚&, 𝑐

Suppose that x is an N1xN2 image, while h is a filter of size M1xM2. Then there are
three possible ways to define the size of the output:
• “Full” output: Both 𝑥 𝑚$,𝑚& and ℎ 𝑚$,𝑚& are zero-padded prior to convolution,

and then 𝑦 𝑛$, 𝑛& is defined wherever the result is nonzero. This gives 𝑦 𝑛$, 𝑛&
the size of (N1+M1-1)x(N2+M2-1).

• “Same” output: The output, 𝑦 𝑛$, 𝑛& , has the size N1xN2. This means that there is
some zero-padding.

• “Valid” output: The summation is only performed for values of (n1,n2,m1,m2) at
which both x and h are well-defined. This gives 𝑦 𝑛$, 𝑛&, 𝑐 the size of (N1-
M1+1)x(N2-M2+1).

Example: differencing
Suppose we want to calculate the difference
between each pixel, and its second neighbor:

𝑦 𝑛$, 𝑛& = 𝑥 𝑛$, 𝑛& − 𝑥 𝑛$, 𝑛& − 2

We can do that as
𝑦

= *
\ORS

NOT$

*
\PRS

NPT$

𝑥 𝑚$,𝑚& ℎ 𝑛$ − 𝑚$, 𝑛& − 𝑚&

where

ℎ 𝑛$, 𝑛& = ^
1 𝑛$ = 0, 𝑛& = 0
−1 𝑛$ = 0, 𝑛& = 2
0 𝑒𝑙𝑠𝑒

…we often will write this as h=[1,0,-1].

Example: averaging
Suppose we want to calculate the average
between each pixel, and its two neighbors:
𝑦 𝑛$, 𝑛&
= 𝑥 𝑛$, 𝑛& + 2𝑥 𝑛$, 𝑛& − 1 + 𝑥 𝑛$, 𝑛& − 2

We can do that as
𝑦

= *
\ORS

NOT$

*
\PRS

NPT$

𝑥 𝑚$,𝑚& ℎ 𝑛$ − 𝑚$, 𝑛& − 𝑚&

where

ℎ 𝑛$, 𝑛& = ^
1 𝑛$ = 0, 𝑛& ∈ {0,2}
2 𝑛$ = 0, 𝑛& = 1
0 𝑒𝑙𝑠𝑒

…we often will write this as h=[1,2,1].

The two ways we’ll use convolution in mp3

1. Matched filtering: The filter is
designed to pick out a particular
type of object (e.g., a bicycle, or a
Volkswagon beetle). The output of
the filter has a large value when the
object is found, and a small random
value otherwise.

2. Gradient: Two filters are designed,
one to estimate the horizontal
image gradient 𝐺a 𝑛$, 𝑛&, 𝑐 =b
bQP

𝑥 𝑛$, 𝑛&, 𝑐 , and one to estimate
the vertical image gradient
𝐺c 𝑛$, 𝑛&, 𝑐 = b

bQO
𝑥 𝑛$, 𝑛&, 𝑐

Outline: Image filtering and image features

• Images as signals
• Color spaces and color features
• 2D convolution
• Matched filters
• Gradient filters
• Separable convolution
• Accuracy spectrum of a 1-feature classifier

Matched filter is the solution to the “signal
detection” problem.
Suppose we have a noisy signal, x[n]. We have two hypotheses:
• H0: x[n] is just noise, i.e., x[n]=v[n], where v[n] is a zero-mean, unit-

variance Gaussian white noise signal.
• H1: x[n]=s[n]+v[n], where v[n] is the same random noise signal, but s[n] is a

deterministic (non-random) signal that we know in advance.
We want to create a hypothesis test as follows:
1. Compute y[n]=h[n]*x[n]
2. If y[0] > threshold, then conclude that H1 is true (signal present). If y[0] <

threshold, then conclude that H0 is true (signal absent).
Can we design h[n] in order to maximize the probability that this classifier
will give the right answer?

The “signal detection” problem
𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛 = 𝑠 𝑛 ∗ ℎ 𝑛 + 𝑣 𝑛 ∗ ℎ[𝑛]

• Call it w[n]: w n = 𝑣 𝑛 ∗ ℎ 𝑛 = ∑𝑣 𝑚 ℎ[𝑛 − 𝑚] is a Gaussian
random variable with zero average.

• The weighted sum of Gaussians is also a Gaussian
• E 𝑤 𝑚 = 0 because E 𝑣 𝑚 = 0

• The variance is 𝜎k& = ∑𝜎l&ℎ& [𝑛 − 𝑚] = ∑ℎ& [𝑛 − 𝑚]
• (because we assumed that 𝜎l& = 1).
• Suppose we constrain h[n] as ∑ℎ& [𝑛 − 𝑚] = 1. Then we have 𝜎k& = 1.

• So under H0 (signal absent), y[n] is a zero-mean, unit-variance
Gaussian random signal.

The “signal detection” problem
𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛 = 𝑠 𝑛 ∗ ℎ 𝑛 + 𝑤 𝑛

So w[0] is a zero-mean, unit-variance Gaussian random variable.
We have two hypotheses:

• H0: 𝑦 0 = 𝑤 0
• H1: 𝑦 0 = 𝑤 0 + ∑ 𝑠 𝑚 ℎ[0 − 𝑚]

Goal: we know s[m]. We want to design h[m] so that ∑ 𝑠 𝑚 ℎ[−𝑚] is
as large as possible, subject to the constraint that ∑ℎ& [𝑛 − 𝑚] = 1.

The solution: matched filters
Goal: we know s[m]. We want to design h[m] so that ∑𝑠 𝑚 ℎ[−𝑚] is as large as
possible, subject to the constraint that ∑ℎ& [𝑛 − 𝑚] = 1.

The solution: ℎ 𝑚 ∝ 𝑠[−𝑚].
(Specifically, ℎ 𝑚 = 𝑠[−𝑚]/ ∑ 𝑠& [𝑚])

Under H0 (signal absent), y[0] is a zero-mean unit-variance Gaussian (ZMUVG):
𝑦 0 = 𝑤 0

Then under H1 (signal present), y[0] is a ZMUVG + 1:

𝑦 0 = 𝑤 0 +*𝑠 𝑚 ℎ[−𝑚] = 𝑤 0 +
∑𝑠& [𝑚]
∑ 𝑠& [𝑚]

= 𝑤 0 + *𝑠& [𝑚]

The solution: matched filters
The solution: ℎ 𝑚 = 𝑠[−𝑚]/ ∑ 𝑠& [𝑚].
1. Compute y[n]=h[n]*x[n]

1. If y[0] > 0.5 ∑𝑠& [𝑚], then conclude that H1 is true (signal present).
2. If y[0] < 0.5 ∑𝑠& [𝑚], then conclude that H0 is true (signal absent).

Example: beetles versus bicycles

Designing a matched filter by averaging all of
the input data
• Given: 12 example images of beetles, 𝑥n 𝑛$, 𝑛&, 𝑐 , for 0 ≤ 𝑑 ≤ 11.
• Goal: design a matched filter ℎ 𝑛$, 𝑛&, 𝑐 that will maximize

𝑦n 0,0, 𝑐 =*
\O

*
\P

𝑥n 𝑚$,𝑚&, 𝑐 ℎ −𝑚$,−𝑚&, 𝑐

…on average for 0 ≤ 𝑑 ≤ 11, subject to ∑\O∑\P ℎ
& 𝑚$,𝑚&, 𝑐 = 1.

Solution:

ℎ 𝑚$,𝑚&, 𝑐 ∝
1
12*

n

𝑥n −𝑚$,−𝑚&, 𝑐

Designing a matched filter by averaging all of
the input data
Solution:

ℎ 𝑚$,𝑚&, 𝑐 ∝
1
12
*
n

𝑥n −𝑚$, −𝑚&, 𝑐

• Flip each image left-to-right (−𝑚&)
• Flip each image top-to-bottom (−𝑚$)
• Take the average, across all of the training images
• To make the output of this filtering more interesting: throw away the

first two rows, last two rows, first two columns, and last two columns
of each input image, the result will be that ℎ 𝑚$,𝑚&, 𝑐 has a size
M1=N1-4, M2=N2-4, so the “valid” output will be 5x5.

Matched filters for beetles and bicycles

• Flip each image left-to-right (−𝑚&)
• Flip each image top-to-bottom (−𝑚$)
• Take the average, across all of the training images.
• Shown here: three color planes, Y, Pb, and Pr.

Match = input image, convolved with matched filter

𝑦n 𝑛$, 𝑛&, 𝑐 = 𝑥n 𝑛$, 𝑛&, 𝑐 ∗∗ ℎ 𝑛$, 𝑛&, 𝑐

= ∗∗

A note about ”valid” output pixels:
𝑦n 𝑛$, 𝑛&, 𝑐 = *

\O

*
\P

𝑥n 𝑚$,𝑚&, 𝑐 ℎ 𝑛$−𝑚$, 𝑛& − 𝑚&, 𝑐

Valid output pixels are the values of 𝑦n 𝑛$, 𝑛&, 𝑐 whose summations
include only valid pixels of 𝑥n 𝑚$,𝑚&, 𝑐 and ℎ 𝑛$−𝑚$, 𝑛& − 𝑚&, 𝑐 . The
result has size (N1-M1+1)x(N2-M2+1)=5x5.

= ∗∗

Match outputs
𝑦n 𝑛$, 𝑛&, 𝑐 = *

\O

*
\P

𝑥n 𝑚$,𝑚&, 𝑐 ℎ 𝑛$−𝑚$, 𝑛& − 𝑚&, 𝑐

The best match should occur at n1=0, n2=0, which is sort of the pixel in the
middle of the output. However, that middle pixel is rarely the best match.
Instead, the best match often occurs a few pixels to the right, left, up, or
down, implying that this particular image is shifted relative to the mean-
image.

= ∗∗

Outline: Image filtering and image features

• Images as signals
• Color spaces and color features
• 2D convolution
• Matched filters
• Gradient filters
• Separable convolution
• Accuracy spectrum of a 1-feature classifier

Computing the gradient of image pixels

The gradient of an image turns each
image plane, c, into a pair of image
planes:
∇𝑥 𝑛$, 𝑛&, 𝑐

=
𝛿
𝛿𝑛$

𝑥 𝑛$, 𝑛&, 𝑐 ,
𝛿
𝛿𝑛&

𝑥 𝑛$, 𝑛&, 𝑐

We usually divide the gradient into two
sub-images, the horizontal gradient Gx,
and the vertical gradient Gy:

𝐺a 𝑛$, 𝑛&, 𝑐 =
𝛿
𝛿𝑛&

𝑥 𝑛$, 𝑛&, 𝑐

𝐺c 𝑛$, 𝑛&, 𝑐 =
𝛿
𝛿𝑛$

𝑥 𝑛$, 𝑛&, 𝑐

Computing the gradient of image pixels

Of course we can’t really calculate the
derivative of a discrete image. So we
approximate it using filters

𝐺a 𝑛$, 𝑛&, 𝑐 = 𝑥 𝑛$, 𝑛&, 𝑐 ∗∗ ℎa 𝑛$, 𝑛&
≈

𝛿
𝛿𝑛&

𝑥 𝑛$, 𝑛&, 𝑐

𝐺c 𝑛$, 𝑛&, 𝑐 = 𝑥 𝑛$, 𝑛&, 𝑐 ∗∗ ℎc 𝑛$, 𝑛&
≈

𝛿
𝛿𝑛$

𝑥 𝑛$, 𝑛&, 𝑐

The Sobel mask

The Sobel mask is a particularly
simple approximation to the
gradient – it takes the difference in
one direction, then averages in the
other direction:

ℎa 𝑛$, 𝑛& =
1 0 −1
2 0 −2
1 0 −1

ℎc 𝑛$, 𝑛& =
1 2 1
0 0 0
−1 −2 −1

Splitting the Sobel mask into separable filters

The Sobel mask is very popular, in part, because each of the 2D
filters can be separated into a row-filter, followed by a column-
filter:

ℎa 𝑛$, 𝑛& =
1 0 −1
2 0 −2
1 0 −1

=
1
2
1

1 0 −1

ℎc 𝑛$, 𝑛& =
1 2 1
0 0 0
−1 −2 −1

=
1
0
−1

1 2 1

Outline: Image filtering and image features

• Images as signals
• Color spaces and color features
• 2D convolution
• Matched filters
• Gradient filters
• Separable convolution
• Accuracy spectrum of a 1-feature classifier

Separable filters

A “separable filter” is one that can be written as the product of a row-filter,
times a column-filter:

ℎ 𝑛$, 𝑛& = ℎ$ 𝑛$ ℎ& 𝑛&

If the filter can be separated, then the convolution can also be separated:

*
\O

*
\P

𝑥n 𝑚$,𝑚& ℎ 𝑛$−𝑚$, 𝑛& −𝑚&

=*
\P

*
\O

𝑥n 𝑚$,𝑚& ℎ$ 𝑛$ −𝑚$ ℎ& 𝑛& −𝑚&

Separable filters
This operation requires a double-summation, which has a
computational complexity equal to (# rows)X(# columns):

𝑦 𝑛$, 𝑛& = *
\O

*
\P

𝑥n 𝑚$,𝑚& ℎ 𝑛$−𝑚$, 𝑛& − 𝑚&

This operation requires a single summation, which has a computational
complexity equal to (# rows):

𝑣 𝑛$,𝑚& =*
\O

𝑥n 𝑚$,𝑚& ℎ$ 𝑛$ −𝑚$

Separable filters
This operation requires a double-summation, which has a
computational complexity equal to (# rows)X(# columns):

𝑦 𝑛$, 𝑛& = *
\O

*
\P

𝑥n 𝑚$,𝑚& ℎ 𝑛$−𝑚$, 𝑛& − 𝑚&

This operation requires a single summation, which has a computational
complexity equal to (# rows):

𝑣 𝑛$,𝑚& =*
\O

𝑥n 𝑚$,𝑚& ℎ$ 𝑛$ −𝑚$

This operation requires a single summation, which has a computational
complexity equal to (# columns):

𝑦 𝑛$, 𝑛& = *
\P

𝑣 𝑛$,𝑚& ℎ& 𝑛& −𝑚&

Separable filters
This operation requires a double-summation, which has a
computational complexity equal to (# rows)X(# columns):

𝑦 𝑛$, 𝑛& = *
\O

*
\P

𝑥n 𝑚$,𝑚& ℎ 𝑛$−𝑚$, 𝑛& − 𝑚&

This operation requires two single summations, with a computational
complexity equal to (# rows) + (# columns):

𝑦 𝑛$, 𝑛& = *
\P

*
\O

𝑥n 𝑚$,𝑚& ℎ$ 𝑛$ −𝑚$ ℎ& 𝑛& − 𝑚&

Usually, a computational complexity of (# rows) + (# columns) is much,
much less than (# rows)X(# columns)!!!

Outline: Image filtering and image features

• Images as signals
• Color spaces and color features
• 2D convolution
• Matched filters
• Gradient filters
• Separable convolution
• Accuracy spectrum of a 1-feature classifier

What is a “1-feature classifier”?

Test some feature, f[k]. Say that
the test image is “class 1” if and
only if f[k] >= threshold.

Example: airplanes (blue) vs.
skyscrapers (green)

Threshold for the color feature
Threshold for the matched-
filtering feature

Threshold for the gradient feature

What are the possible thresholds?

Notice that the only thresholds
that are worth testing are the
values of feature[k] that are
actually measured values, for at
least one datum!

Varying the threshold from one
datum to the next makes no
change, at all, in the accuracy, so
it’s not useful to test those
thresholds.

Example: airplanes (blue) vs.
skyscrapers (green)

Accuracy spectrum
The “accuracy spectrum” for a
particular feature is the list of all
possible accuracies that could be
achieved by any one-feature
classifier.
• Test, as possible threshold, every

value of feature[k] observed for
any training image.

• List the resulting classifier
accuracies.

• For each feature, find the best
threshold.

Example: airplanes vs.
skyscrapers

Negative polarity
What happens if some accuracies are
below 50%?
That just means that you should use,
instead, a “negative polarity”
classifier:
Call an image “class 0” if
feature[k]>=threshold.

The accuracy of the “negative
polarity” classifier is 1 minus the
accuracy of the “positive polarity”
classifier. So you want
max(accuracy,1-accuracy), maximum
over all possible thresholds.

Example: airplanes vs.
skyscrapers

A few final thoughts

• Fire vs. Water: you should find that color is the best classifier
• Airplanes vs. Skyscrapers: gradient feature gets 92% accuracy!

Skyscrapers have a lot of vertical edges (Gx is large), while airplanes
have a lot of horizontal edges (Gy is large).

• Beetles vs. Bicycles: the matched filter does well in this case, because
beetles and bicycles have pretty matchable shapes.

