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Linear Transforms
A linear transform �⃗� = 𝐴�⃗� maps vector 
space �⃗� onto vector space �⃗�.  

For example: the matrix 𝐴 = 1 1
0 2

maps the vectors 
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Linear Transforms
A linear transform �⃗� = 𝐴�⃗� maps vector 
space �⃗� onto vector space �⃗�.  

For example: the matrix 𝐴 = 1 1
0 2 maps 
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Linear Transforms
A linear transform �⃗� = 𝐴�⃗� maps vector 
space �⃗� onto vector space �⃗�.  The 
absolute value of the determinant of A 
tells you how much the area of a unit 
circle is changed under the 
transformation.  

For example: if 𝐴 = 1 1
0 2 , then the 

unit circle in �⃗� (which has an area of 𝜋) 
is mapped to an ellipse with an area of 
𝜋 𝑎𝑏𝑠( 𝐴 ) = 2𝜋.
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Eigenvectors
• For a D-dimensional square matrix, there may 

be up to D different directions �⃗� = �⃗�8 such that, 
for some scalar 𝜆8, 

𝐴�⃗�8 = 𝜆8�⃗�8
• For example: if 𝐴 = 1 1

0 2 , then the 
eigenvectors and eigenvalues are

�⃗�) =
1
0 , �⃗�+ =

1
2
1
2

, 𝜆) = 1, 𝜆+ = 2

• Those vectors are red and extra-thick, in the 
figure to the left.  Notice that one of the 
vectors gets scaled by 𝜆) = 1, but the other 
gets scaled by 𝜆+ = 2.
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Eigenvectors
• An eigenvector is a direction, not just a vector.  That 

means that if you multiply an eigenvector by any scalar, 
you get the same eigenvector: if 𝐴�⃗�8 = 𝜆8�⃗�8, then it’s 
also true that 𝑐𝐴�⃗�8 = 𝑐𝜆8�⃗�8 for any scalar 𝑐.

• For example: the following are all the same eigenvector

�⃗�+ =

1
2
1
2

, 2�⃗�+ =
1
1 ,−�⃗�+ =

−
1
2

−
1
2

• Since scale and sign don’t matter, by convention, we 
normalize so that 
• An eigenvector is always unit-length: �⃗�8 , = 1 and 
• the first nonzero element is non-negative: 𝑣8 0 ≥ 0
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Eigenvectors
• Notice that only square matrices can 

have eigenvectors.  For a non-square 
matrix, the equation 𝐴�⃗�8 = 𝜆8�⃗�8 is 
impossible --- the dimension of the 
output is different from the 
dimension of the input.
• Not all matrices have eigenvectors!  

For example, a rotation matrix 
doesn’t have any real-valued 
eigenvectors:

𝑅 = cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃
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Eigenvalues
𝐴�⃗�8 = 𝜆8�⃗�8
𝐴�⃗�8 = 𝜆8𝐼�⃗�8

𝐴�⃗�8 − 𝜆8𝐼�⃗�8 = 0
(𝐴 − 𝜆8𝐼)�⃗�8 = 0

That means that when you use the linear 
transform (𝐴 − 𝜆8𝐼) to transform the unit 
circle, the result has an area of:

𝜋 𝐴 − 𝜆𝐼 = 0
Example:
𝐴 − 𝜆𝐼 = 1 − 𝜆 1

0 2 − 𝜆 = 2 − 3𝜆 + 𝜆,

…which has roots at 𝜆) = 1, 𝜆+ = 2.
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Eigenvalues
Let’s talk about that equation, 𝐴 − 𝜆𝐼 = 0.  Remember how the 
determinant is calculated, for example if

𝐴 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

, then 𝐴 − 𝜆𝐼 = 0means that

0 = 𝐴 − 𝜆𝐼 =
𝑎 − 𝜆 𝑏 𝑐
𝑑 𝑒 − 𝜆 𝑓
𝑔 ℎ 𝑖 − 𝜆

=

(𝑎 − 𝜆)(𝑒 − 𝜆) 𝑖 − 𝜆 − 𝑏 𝑑 𝑖 − 𝜆 − 𝑔𝑓 + 𝑐 𝑑ℎ − 𝑔 𝑒 − 𝜆
• We assume that 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖 are all given in the problem statement.  

Only 𝜆 is unknown.  So the equation 𝐴 − 𝜆𝐼 = 0 is a D’th order 
polynomial in one variable.
• The fundamental theorem of algebra says that a D’th order polynomial 

ALWAYS has D roots (counting repeated roots and complex roots).



Eigenvalues
So a DxD matrix always has D eigenvalues (counting complex and 
repeated eigenvalues).  This is true even if the matrix has no 
eigenvectors!!  The eigenvalues are the D solutions of the polynomial 
equation

𝐴 − 𝜆𝐼 = 0

Summary:
• Not every square matrix has eigenvectors, but…
• Every DxD square matrix has exactly D eigenvalues (counting possibly 

complex eigenvalues, and repeated eigenvalues).
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Left and right eigenvectors
We’ve been working with right eigenvectors and right eigenvalues: 

𝐴�⃗�8 = 𝜆8�⃗�8

There may also be left eigenvectors, which are row vectors 𝑢8M, and 
corresponding left eigenvalues 𝜇8:

𝑢8M𝐴 = 𝜅8𝑢8M



Eigenvectors on both sides of the matrix
You can do an interesting thing if you multiply the matrix by its eigenvectors 
both before and after:

𝑢PM𝐴�⃗�Q = 𝑢PM 𝜆Q�⃗�Q = 𝜆Q𝑢PM�⃗�Q

… but …
𝑢PM𝐴�⃗�Q = 𝜅P𝑢PM �⃗�Q = 𝜇P𝑢PM�⃗�Q

There are only two ways that both of these things can be true. Either
𝜅P = 𝜆Q

… or …
𝑢PM�⃗�Q = 0



Left and right eigenvectors must be paired!!
Remember that eigenvalues are the D solutions of the polynomial 
equation 𝐴 − 𝜆8𝐼 = 0.  Almost always, these D solutions are all 
different!  In that case, the left and right eigenvectors must be paired 
so that

𝑢PM�⃗�Q = 0 𝑖 ≠ 𝑗
and

𝜅P = 𝜆P = 𝑖TU 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴 − 𝜆𝐼 = 0



Symmetric matrices: left == right
If A is symmetric (𝐴 = 𝐴M), then the left and right eigenvectors and 
eigenvalues are the same, because

𝜆8𝑢8M = 𝑢8M𝐴 = 𝐴M𝑢8 M = 𝐴𝑢8 M

… and that last term is only equal to 𝜆8𝑢8M IF AND ONLY IF 𝑢8 = �⃗�8



Symmetric matrices have orthonormal eigenvectors
So now, suppose A is symmetric:

�⃗�PM𝐴�⃗�Q = �⃗�PM 𝜆Q�⃗�Q = 𝜆Q�⃗�PM�⃗�Q = Z
𝜆Q, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

In other words, if a symmetric matrix has D eigenvectors with distinct 
eigenvalues, then its eigenvectors form an orthonormal basis:

�⃗�PM�⃗�Q = Z
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗



Symmetric matrices have orthonormal eigenvectors
So now, suppose A is symmetric:

�⃗�PM𝐴�⃗�Q = �⃗�PM 𝜆Q�⃗�Q = 𝜆Q�⃗�PM�⃗�Q = Z
𝜆Q, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

In other words, if a symmetric matrix has D eigenvectors with distinct 
eigenvalues, then its eigenvectors form an orthonormal basis:

𝑉M𝑉 = 𝐼, 𝑉 = �⃗�) … �⃗�]^+
Also, 
𝑉𝑉M = 𝑉𝐼𝑉M = 𝑉𝑉M𝑉𝑉M = 𝑉𝑉M ,, which is only possible if 𝑉𝑉M = 𝐼.



Eigenvectors orthogonalize a symmetric matrix:
So now, suppose A is symmetric:

�⃗�PM𝐴�⃗�Q = �⃗�PM 𝜆Q�⃗�Q = 𝜆Q�⃗�PM�⃗�Q = Z
𝜆Q, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

In other words, if a symmetric matrix has D eigenvectors with distinct 
eigenvalues, then its eigenvectors orthogonalize A:

𝑉M𝐴𝑉 = Λ, Λ =
𝜆) 0 0
0 … 0
0 0 𝜆]^+



A symmetric matrix is the weighted sum of its eigenvectors:

So now, suppose A is symmetric:

�⃗�PM𝐴�⃗�Q = �⃗�PM 𝜆Q�⃗�Q = 𝜆Q�⃗�PM�⃗�Q = Z
𝜆Q, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

In other words, if a symmetric matrix has D eigenvectors with distinct 
eigenvalues, then it equals the weighted sum of its eigenvectors:

𝐴 = 𝑉𝑉M𝐴𝑉𝑉M = 𝑉Λ𝑉M = `
8a)

]^+

𝜆8�⃗�8�⃗�8M



Summary: properties of symmetric matrices
If A is symmetric with D eigenvectors, and D distinct eigenvalues, then

𝐴 = 𝑉Λ𝑉M

Λ = 𝑉M𝐴𝑉

𝑉𝑉M = 𝑉M𝑉 = 𝐼
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Scalar Gaussian Random Variables

𝜇 = 𝐸 𝑥

𝜎, = 𝐸 𝑥 − 𝜇 ,



Gaussian Random Vector

�⃗� =
𝑥)
⋮

𝑥]^+
, 𝜇 =

𝜇)
⋮

𝜇]^+

𝜇 = 𝐸 �⃗�



Gaussian Random Vector

𝑅 =
𝜌)) 𝜌)+ ⋱
𝜌+) ⋱ 𝜌]^,,]^+
⋱ 𝜌]^+,]^, 𝜌]^+,]^+

𝜌PQ = 𝐸 𝑥P − 𝜇P 𝑥Q − 𝜇Q

𝜎P, = 𝜌PP = 𝐸 𝑥P − 𝜇P ,



Gaussian Random Vector

𝑅 = 𝐸 �⃗� − 𝜇 �⃗� − 𝜇 M



Sample Mean, Sample Covariance
In the real world, we don’t know 𝜇 and 
𝑅!  If we have M instances �⃗�g of the 
Gaussian, we can estimate 𝜇 and 𝑅 as

𝜇 =
1
𝑀
`
ga)

i^+

�⃗�g

𝑅 =
1

𝑀 − 1
`
ga)

i^+

�⃗�g − 𝜇 �⃗�g − 𝜇 M

Sample mean and sample covariance 
are not the same as the real mean and
covariance, but we’ll use the same 
letters for them (𝜇 and 𝑅) unless the 
problem requires us to distinguish.
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Sample Covariance

𝑅 =
1

𝑀 − 1
`
ga)

i^+

�⃗�g − 𝜇 �⃗�g − 𝜇 M

=
1

𝑀 − 1
𝑋M𝑋

…where X is the centered data matrix,

𝑋 =
�⃗�) − 𝜇 M

⋮
�⃗�i^+ − 𝜇 M



Centered Data Matrix

𝑋 =
�⃗�) − 𝜇 M

⋮
�⃗�i^+ − 𝜇 M

𝐸 �⃗�g − 𝜇 = 0



Principal Component Axes
𝑋M𝑋 is symmetric!
Therefore, 

𝑋M𝑋 = 𝑉Λ𝑉M

𝑉 = �⃗�) … �⃗�]^+ are called the 
principal component axes, or principal 
component directions.



Principal Components
𝑋M𝑋 = 𝑉Λ𝑉M

𝑉M𝑋M𝑋𝑉 = 𝑉M𝑉Λ𝑉M𝑉 = Λ

𝑌M𝑌 = Λ
…where…

𝑌 =
�⃗�)M
⋮

�⃗�]^+M
=

�⃗�) − �⃗� M𝑉
⋮

�⃗�i^+ − �⃗� M𝑉

�⃗�g is the vector of principal components of �⃗�g.  
The principal components are:

𝑦g8 = �⃗�g − �⃗� M�⃗�8



Principal Components are Uncorrelated
Basics of matrix notation.  This equation: 𝑌M𝑌 = Λ. 
Means:

`
ga)

i^+

�⃗�g�⃗�g
M =

𝜆) 0 0
0 … 0
0 0 𝜆]^+

In other words, 

𝐸 𝑦P𝑦Q j∝ `
ga)

i^+

𝑦gP𝑦gQ = Z𝜆P, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

(the symbol j∝ means “approximately proportional to”)



Eigenvalue ∝ Variance of the Principal Component
More precisely, the sample covariance of principal 
components 𝑦P and 𝑦Q is 0, unless 𝑖 = 𝑗, in which case

1
𝑀 − 1

`
ga)

i^+

𝑦gP, =
𝜆P

𝑀 − 1



Eigenvalue = Energy of the Principal Component
The total dataset energy of 𝑦P is

`
ga)

i^+

𝑦gP, = 𝜆P

But remember that �⃗�8 , = 1.  Therefore, the total 
dataset energy is the same, whether you calculate it 
in the original image domain, or in the PCA domain:

`
ga)

i^+

`
8a)

]^+

𝑥g8 − 𝜇8 , = `
ga)

i^+

`
Pa)

]^+

𝑦gP, = `
Pa)

]^+

𝜆P



Energy Spectrum = Fraction of Energy Explained
The “energy spectrum” is energy as a function of 
basis vector index.  There are a few ways we could 
define it, but one useful definition is:

𝐸 𝑘 =
∑ga)i^+ ∑Pa)n^+ 𝑦gP,

∑ga)i^+ ∑8a)]^+ 𝑥g8 − 𝜇8 ,

=
∑Pa)
n^+ 𝜆P

∑Pa)]^+ 𝜆P
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Gram Matrix
• 𝑋M𝑋 is usually called the sum-of-

squares matrix. +
i^+

𝑋M𝑋 is the 
sample covariance.
• 𝐺 = 𝑋𝑋M is called the gram 

matrix.  It’s 𝑖, 𝑗 TU element is 
the dot product between the 𝑖TU
and 𝑗TU data:

𝑔PQ = �⃗�P − 𝜇 M �⃗�Q − 𝜇



Eigenvectors of the Gram Matrix

𝑋𝑋M is also symmetric!  So it has 
orthonormal eigenvectors:

𝑋𝑋M = 𝑈Λ𝑈M

𝑈𝑈M = 𝑈M𝑈 = 𝐼

𝑋M𝑋 and 𝑋𝑋M have the same 
eigenvalues (Λ) but different 
eigenvectors (𝑉 vs. 𝑈).



Why the Gram matrix is useful…
Suppose (as in mp2) that D=4096 pixels, but that M=48 images.  Then, in order to 
perform this eigenvalue analysis:

𝑋M𝑋 = 𝑉Λ𝑉M

… requires factoring a 4096-order polynomial ( 𝑋M𝑋 − 𝜆𝐼 = 0), then solving 4096 
simultaneous linear equations in 4096 unknowns to find each eigenvector 
(𝑋M𝑋�⃗�8 = 𝜆8�⃗�8).  Even if you use the canned function np.linalg.eig to solve it for 
you, it’s going to take a LOT of computation.  On the other hand,

𝑋𝑋M = 𝑈Λ𝑈M

…is 48th order.  Educated experts agree: 48 < 4096.
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Singular Values

• Both 𝑋M𝑋 and 𝑋𝑋M are positive semi-definite, meaning that their 
eigenvalues are non-negative, 𝜆8 ≥ 0.  
• The ”Singular Values” are defined to be the square root of the 

eigenvalues, 𝑠8 = 𝜆8.

𝑆 =
𝑠) 0 0
0 … 0
0 0 𝑠]^+

, Λ = 𝑆𝑆 =
𝑠), 0 0
0 … 0
0 0 𝑠]^+,



Singular Value Decomposition

𝑀 − 1 𝑅 = 𝑋M𝑋 = 𝑉Λ𝑉M = 𝑉𝑆𝑆𝑉M

𝐺 = 𝑋𝑋M = 𝑈Λ𝑈M = 𝑈𝑆𝑆𝑈M



Singular Value Decomposition

𝑋M𝑋 = 𝑉𝑆𝑆𝑉M = 𝑉𝑆𝐼𝑆𝑉M = 𝑉𝑆𝑈M𝑈𝑆𝑉M

𝑋𝑋M = 𝑈𝑆𝑆𝑈M = 𝑈𝑆𝐼𝑆𝑈M = 𝑈𝑆𝑉M𝑉𝑆𝑈M



Singular Value Decomposition
OK.  Here is a magical fact, which is not taught in introductory linear 
algebra courses, and I don’t know why.  ANY data matrix, X, can be 
written as 𝑋 = 𝑈𝑆𝑉M.
• 𝑈 = 𝑢) … 𝑢i^+ are the eigenvectors of 𝑋𝑋M.
• 𝑉 = �⃗�) … �⃗�]^+ are the eigenvectors of 𝑋M𝑋.

• 𝑆 =
𝑠) 0 0
0 … 0
0 0 𝑠rst(],i)^+

0
0
0

0
0
0

are the singular values.

• S has some all-zero columns if M>D, or all-zero rows if M<D.



What np.linalg.svd does
First, decide whether you want to find the eigenvectors of 𝑋𝑋M or of 
𝑋M𝑋: just check to see which one is larger.  If you discover that 
4096>48, then compute 𝑋𝑋M = 𝑈Λ𝑈M, and 𝑆 = Λ.  Then you find 𝑉
as follows:

𝑋M = 𝑉𝑆𝑈M

𝑋M𝑈 = 𝑉𝑆

𝑋M𝑈𝑆^+ = 𝑉



Methods that solve mp2
• Direct eigenvector analysis of 𝑋M𝑋 = 𝑉Λ𝑉M gives the right answer, 

but takes a very long time.  When I tried this, it timed-out the 
autograder.
• Applying np.linalg.svd to 𝑋 gives the right answer, very fast.
• This also works, and is actually just as fast as np.linalg.svd (I tested it): 

you can apply np.linalg.eig to the gram matrix G = 𝑋𝑋M, then 
compute 𝑉M = 𝑆^+𝑈M𝑋.


