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Content

* Linear transforms

* Eigenvectors

 Eigenvalues

* Symmetric matrices

e Gaussian random vectors

* Principal component axes = eigenvectors of the covariance
* Gram matrix

e Singular value decomposition



Linear Transforms

A linear transform y = AX maps vector

A
space X onto vector space . /
A

A

For example: the matrix A = [(1) %]
maps the vectors

1 _ 1 ' Y1
Xg) X1, Xg, X3 = [é], f ;[(ﬂ» iﬁ |
V2] | V2

to the vectors

Vo, Y1, V2, Y3 = [(1)] ’ [g] ’ E] ' [\%‘ W



Linear Transforms

A linear transform y = Ax maps vector

A

space X onto vector space Y. /
1 1 \

\

A

For example: the matrix 4 = [O 2] maps
the vectors

D!

1_

| 2T
V2

V1
|
to the vectors < —> Yo
V= [1 V2 ]
0 V2 V2




Linear Transforms

A linear transform y = AX maps vector
space x onto vector space y. The
absolute value of the determinant of A
tells you how much the area of a unit
circle is changed under the
transformation.

For example: if A = [(1) ;], then the

unit circle in X (which has an area of n)
is mapped to an ellipse with an area of
m abs(|A|) = 2m.
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Eigenvectors

For a D-dimensional square matrix, there may
be up to D different directions X = ¥4 such that,
for some scalar 4,
AT})d - Adﬁd
P b B |
For example: if A = 0 2l then the
eigenvectors and eigenvalues are

,/10 - 1,11 =2

A~y
o
Il
e
O =
—
A~
=
Il
Sl =&l -

Those vectors are red and extra-thick, in the
figure to the left. Notice that one of the
vectors gets scaled by 4, = 1, but the other
gets scaled by 1, = 2.
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Eigenvectors

* An eigenvector is a direction, not just a vector. That
means that if you multiply an eigenvector by any scalar,
you get the same eigenvector: it AVy; = A4V, then it’s
also true that cAv,; = cA v, for any scalar c.

* For example: the following are all the same eigenvector <

%

5, = | V2| V25, = [1], -5 =| V2 Ty,
v vl +
* Since scale and sign don’t matter, by convention, we < /

normalize so that
* An eigenvector is always unit-length: ||74]|, = 1 and
* the first nonzero element is non-negative: v;[0] = 0



Eigenvectors

* Notice that only square matrices can

A

impossible --- the dimension of the

A
have eigenvectors. For a non-square /
matrix, the equation Av,; = A4vV,4is
output is different from the \

\

dimension of the input.

* Not all matrices have eigenvectors!
For example, a rotation matrix
doesn’t have any real-valued
eigenvectors:

__[cosf® —sinf
R_[sinH cos 6
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* Principal component axes = eigenvectors of the covariance
* Gram matrix

* Singular value decomposition



Eigenvalues

Aﬁd — Adﬁd
Aﬁd — Adlﬁd

That means that when you use the linear

transform (A — A41) to transform the unit
circle, the result has an area of:

m|A—AIl =0
Example:
_ _11=2 1 |_, 2
a—an=|" 0" 2 | =2-31+2
..which hasrootsat A, = 1,1; = 2.

A
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Eigenvalues

Let’s talk about that equation, |A — AI| = 0. Remember how the

determinant is calculated, for example if

a b c]
A=
g h L a—A
0=|A—-Al|=| d
g

d e f], then|A— AI| = 0 means that

b c
e—1 f
h I —A

(a—De—-D) -1 —bdli—-21)—gf)+c(dh—gle—2))

* We assume thata, b, c,d, e, f, g, h, i are all given in the problem statement.
Only A is unknown. So the equation |A — AI| = 0 is a D’th order

polynomial in one variable.

* The fundamental theorem of algebra says that a D’th order polynomial
ALWAYS has D roots (counting repeated roots and complex roots).



Eigenvalues

So a DxD matrix always has D eigenvalues (counting complex and
repeated eigenvalues). This is true even if the matrix has no
eigenvectors!! The eigenvalues are the D solutions of the polynomial
equation

A=Al =0

Summary:
* Not every square matrix has eigenvectors, but...

* Every DxD square matrix has exactly D eigenvalues (counting possibly
complex eigenvalues, and repeated eigenvalues).
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Left and right eigenvectors

We’ve been working with right eigenvectors and right eigenvalues:
Aﬁd — Adﬁd

There may also be left eigenvectors, which are row vectors 'ZZZ;, and
corresponding left eigenvalues pg:

17514 = Kdﬁg



Eigenvectors on both sides of the matrix

You can do an interesting thing if you multiply the matrix by its eigenvectors
both before and after:

—T - =T - _ —>T -
ul- AUJ = U; (/1]17]) = /1]ul vj

... but ...
—T -

-T - =T\ __
u; Avj = (Kl-ul- )vj = Wu; vj

There are only two ways that both of these things can be true. Either
K; = /11
..Or ...

—>T >

u; vy =0



Left and right eigenvectors must be paired!!

Remember that eigenvalues are the D solutions of the polynomial
equation |A — A4I| = 0. Almost always, these D solutions are all
different! In that case, the left and right eigenvectors must be paired

so that

-

Ui v; =0 i+

and
k; = A; = ith solution of |A—AI| =0



Symmetric matrices: left == right

If A is symmetric (A = A7), then the left and right eigenvectors and
eigenvalues are the same, because

Aatig = uhA = (ATdy)T = (Auy)T

.. and that last term is only equal to A4} IF AND ONLY IF 1i; = 7,



Symmetric matrices have orthonormal eigenvectors

So now, suppose A is symmetric:

- - - - ->T > A l:]
U;TAU]' = T(A]U]) = A]U?UJ = {O] i :/:j

In other words, if a symmetric matrix has D eigenvectors with distinct
eigenvalues, then its eigenvectors form an orthonormal basis:

—>’.]"—>. 1) l:]
0, i % j



Symmetric matrices have orthonormal eigenvectors

So now, suppose A is symmetric:

- - - - T - A l:]
U;TAU]' = T(A]U]) = A]U?UJ = {O] i :/:j

In other words, if a symmetric matrix has D eigenvectors with distinct
eigenvalues, then its eigenvectors form an orthonormal basis:

-

Vv =1, V=[P, .. Up_ql

Also,
VvT =vIVT = vVTvVT = (WVT)?, which is only possible if VVT = 1.



Eigenvectors orthogonalize a symmetric matrix:

So now, suppose A is symmetric:

- - - - ->T > A l:]
U;TAU]' = T(A]U]) = A]U?UJ = {O] i :/:j

In other words, if a symmetric matrix has D eigenvectors with distinct
eigenvalues, then its eigenvectors orthogonalize A:

Ao 0 0
VTAV = A, A=|0 .. O ]
0 0 Ap_4



A symmetric matrix is the weighted sum of its eigenvectors:

So now, suppose A is symmetric:

- - - - ->T > A l:]
U;TAU]' = T(A]U]) = A]U?UJ = {O] i :/:j

In other words, if a symmetric matrix has D eigenvectors with distinct
eigenvalues, then it equals the weighted sum of its eigenvectors:

D-1
A=VVTAvVT = VAVT = ) A,40,40)
d=0



Summary: properties of symmetric matrices

If A'is symmetric with D eigenvectors, and D distinct eigenvalues, then
A=VAVT
A=VTAV

Vv =yTy =1
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Scalar Gaussian Random Variables

Instances of a Gaussian RV, mu=1, sd=sqrt(3)

M:E[X] 3.0 - o ° !

g% = E[(X — [1)2] 220-

1.5 4

LT

0.0 A )

Instance Value

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Instance Index



Gaussian Random Vector

Gaussian RV, mu=[1,1]

N
]

Second feature dimension x;

o | o
1

O

O

O

O
O

-1 0 1 2
First feature dimension xg



G a u SS I a n Ra n d O m Ve Cto r Gaussian RV, R=[1.5,0.5;0.5,1.5]

Poo Po1 _ o’
R = [P10 Pp-2p-1|% |
' Pp-1,p-2 Pp-1,p-1

Second feature dimension x;

-1 0 1 2 3
First feature dimension xg



Gaussian Random Vector

Gaussian RV, R=[1.5,0.5;0.5,1.5]

R=E[@E-DE-DT - * |.
O
<
s 2]
o 19
&
)
-1 o
-1 0 1 2 3

First feature dimension xg



Sample Mean, Sample Covariance

In the real world we don’t knOW U and Instances X, of a Gaussian: Arrows show X, —
R! If we have M instances X, of the
Gau55|an we can estimate U and R as 3]

M \

z 2-

m:

Second feature dimension x1m
.—I

M-1
1 - - - >\T
R=m2(xm—ﬂ)(xm—ﬂ) .
— i\K_/

-1 0 1 2 3
First feature dimension xom

Sample mean and sample covariance
are not the same as the real mean and
covariance, but we’ll use the same
letters for them (2 and R) unless the
problem requires us to distinguish.
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* Principal component axes = eigenvectors of the covariance
* Gram matrix
* Singular value decomposition



Sample Covariance

Instances X, of a Gaussian: Arrows show X, — i

R=#1§1(fm—ﬁ)<fm—ﬁf ) \

m=0

1
=—XTX
M-1

Second feature dimension x1m
'—l

0
..where X is the centered data matrix, ’\t/
-1 0 1 2 3
First feature dimension xom

(X0 — D" ]
X = :

(fM—l _ .L_Z)T



Instances X, of a Gaussian: Arrows show X, — i

Centered Data Matrix .

N
L

=
1

1d feature dimension x1p,

(%o — D"
X = :
Ey-1 — D"

Centered Dataset: X, — [

2 -
TL T T
2 2 3
: 19 Xom
2
w
c
]
E
T 0
8 \
8 O
c
8
- 17
c
o
o
]
0
_2_

-2 -1 0 1 2
First centered dimension Xmo — Mo



Principal Component Axes

XTX is symmetric!
Therefore,

XTX =VAVT

vV =[v, Up_q] are called the
principal component axes, or principal
component directions.

Second centered dimension Xm,1 — U1

Scaled Principal Component Axes VoV Ao and vV A1

2 -

Component Ax

-1

0

T

1 2

First centered dimension xmp — Lo

1s1

s v0s0



Principal Components
XTX =VAVT
VIXTXV = VIVAVTV = A

YTy = A
...where...

(X — )TV

L

is the vector of principal components of X,,.
principal components are:

-

- "V
Y

Ymd = (Q_C)m

Second centered dimension xXm1 — U1

Principal Components of Xy are ygoVo + Yo1V1

I
N

Second centered dimension x

First centered dimension xmo — Lo
1 -

_2..

-1

0 1

( Component AX8s \f
o
[ J
[ J
[ J
Component Ax
(]
[ J
-2 -1 0 1 2

First centered dimension Xmo — Lo

1s1

s v0s0



Principal Components are Uncorrelated

Basics of matrix notation. This equation: Y'Y = A.

Means: Principal Components of Xg are yooVo + Yo1v1
] o
M-1 /10 0 0 2 ,’.\\
- > T ! % S
ymym - O ann 0 :E 14 \\\
m=0 0 0 /’{D—l ~§ .‘ W1 ®
g " \y
T 0 &
7 e |\,
In other words, g °l®
5 -1
M-1 2 o 3 *
~ ] l - ] -2 4 ]
— v
E[yly]] X Z YmiVmj = {0 i :/:j | | ' |
_ ! -2 -1 0 1 2

m=0
(the symbol X means “approximately proportional to”)

First centered dimension xmo — Ho



Eigenvalue o« Variance of the Principal Component

More precisely, the sample covariance of principal

components y; and y; is 0, unless i = j, in which case Principal Components of Xy are yooVo + Y01V
2 * .
M-1 g 2N
: > i = ! : ‘'
- — o N
M-1 meoM-1 Ny
m=0 & o y !
£ NV
T 0 L
3 ]
g ol *
S o
[} [
-2 4 [ J
-2 -1 0 1 2

First centered dimension Xmo — Lo



Eigenvalue = Energy of the Principal Component

The total dataset energy of y; is

pcal vs. pcal

I Arnold_Schwarzenegger
p Ml George_HW_Bush

2000 ® Bl George_W_Bush
M-1 r °® 1000 - I jiang_Zemin
) 1000 {® ° 0{.‘ hd e o8 o
. A- | ° ® ’ )
Ymi l 0 e, 9 % 0- o :! %
— —1000{ *%°% % ° ¢ .o' ”
m=0 I ° M :0 '0.
2000 4 ..o —1000 1 o g.
—2000 0 2000 4000 ~2000 1600 0 1000
But remember that ||v4]|, = 1. Therefore, the total 0 {e S ..

dataset energy is the same, whether you calculate it **°7 ,

0 ° . '7 '. 04 ‘ .
in the original image domain, or in the PCA domain: “y “‘, ®o Co" e o
—500 A o .. e o . .'..
e ® ® 500 A
—1000 A o -~ o
—1(')00 (') lOIOO

M- - M— — D-1 ~1000-500 0 500 1000
2 _ pcaS VS. pca4
§ § (Xma — Ha)” = § § le E A
m=0d=0

m=0 i=0 1=

pca7 vs. pca6



Energy Spectrum = Fraction of Energy Explained

The “energy spectrum” is energy as a function of
basis vector index. There are a few ways we could

define it, but one useful definition is: o pca energy spectrum, 36 feats (4096 pixels)
M-1vk-1_,2 0.9 -
 yM-1 20—1( RY £ 081
m=0 d=0 xmd Md g_
§ 0.7
k—1 &
. Zi=0 /1i S 0.6 1
— vD-1 5
Zi:o Ai S os
- 0.4
0.3

0 5 10 15 20 25 30 35
Number of features
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* Gram matrix
* Singular value decomposition



G Fam IVI at FIX Gram Matrix gg1 = (Xo — 1) (X1 — H)

e XTX is usually called the sum-of-
squares matrix. ﬁXTX is the
sample covariance.

« G = XXT is called the gram

matrix. It’s (i, /)" element is
the dot product between the it"
and jt"* data:

Second centered dimension Xm,1 — U1
»

-2

gij = (%; — ﬁ)T(fj — ﬁ)

T T T

-2 -1 0 1
First centered dimension xmo — Lo



Eigenvectors of the Gram Matrix

Gram Matrix gg1 = (Xo — )7 (X1 — )

XXT is also symmetric! So it has 21
orthonormal eigenvectors:

XXT = UAUT

vuT =yUTy =1

Second centered dimension Xm,1 — U1

XTX and XXT have the same
eigenvalues (A) but different

eigenvectors (I vs. U). 0 0 0 1 >

First centered dimension xmo — Lo



Why the Gram matrix is useful...

Suppose (as in mp2) that D=4096 pixels, but that M=48 images. Then, in order to
perform this eigenvalue analysis:

XTX =VAVT

. requires factoring a 4096-order polynomial (|[XTX — AI| = 0), then solving 4096
5|multaneous linear equations in 4096 unknowns to find each eigenvector
(X7 de = Advd) Even if you use the canned function np.linalg.eig to solve it for
you, it’s going to take a LOT of computation. On the other hand,

XXT =UAUT

...is 48t order. Educated experts agree: 48 < 4096.



Content

* Singular value decomposition



Singular Values

« Both XTX and XXT are positive semi-definite, meaning that their
eigenvalues are non-negative, 1; = 0.

* The ”"Singular Values” are defined to be the square root of the
eigenvalues, s; = /A,4.

so 0 0 s2 0
0




Singular Value Decomposition

(M—1R=X"X=VAVT =VSSVT

G=XXT =UAUT = USSUT



Singular Value Decomposition

XTX =vSSvT =vsSISVT =vsuTusyT

XXT =yssuT = usIsuT = usvTvsuT



Singular Value Decomposition

OK. Here is a magical fact, which is not taught in introductory linear
algebra courses, and | don’t know why. ANY data matrix, X, can be
written as X = USVT.

- U = [,
.V =[5,
_So
e S =10
0

0

0

Uy —1] are the eigenvectors of XX 7.

Up_41] are the eigenvectors of X7 X.

0 0 0
0 0 0

Smin(p,M)-1 0 0]

are the singular values.

* S has some all-zero columns if M>D, or all-zero rows if M<D.



What np.linalg.svd does

First, decide whether you want to find the eigenvectors of XX or of
XTX: just check to see which one is larger. If you discover that

4096>48, then compute XXT = UAUT, and S = VA. Then you find V
as follows:
X' =vysuT

XTu =VSs

XTus—1=vy



Methods that solve mp2

* Direct eigenvector analysis of XX = VAVT gives the right answer,
but takes a very long time. When | tried this, it timed-out the

autograder.
* Applying np.linalg.svd to X gives the right answer, very fast.

* This also works, and is actually just as fast as np.linalg.svd (I tested it):
you can apply np.linalg.eig to the gram matrix G = XX, then

compute VT = S~1UTX.



