ECE 417 Lecture 5: Principal Component Analysis (PCA)
 Mark Hasegawa-Johnson
 9/6/2019

Content

- Linear transforms
- Eigenvectors
- Eigenvalues
- Symmetric matrices
- Gaussian random vectors
- Principal component axes = eigenvectors of the covariance
- Gram matrix
- Singular value decomposition

Linear Transforms

A linear transform $\vec{y}=A \vec{x}$ maps vector space \vec{x} onto vector space \vec{y}.
For example: the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ maps the vectors
$\vec{x}_{0}, \vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}=\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$
to the vectors
$\left.\vec{y}_{0}, \vec{y}_{1}, \vec{y}_{2}, \vec{y}_{3}=\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}\sqrt{2} \\ \sqrt{2}\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right], \begin{array}{c}0 \\ \sqrt{2}\end{array}\right]$

Linear Transforms

A linear transform $\vec{y}=A \vec{x}$ maps vector space \vec{x} onto vector space \vec{y}.
For example: the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ maps the vectors

$$
X=\left[\begin{array}{cccc}
1 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & 1 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

to the vectors

$$
Y=\left[\begin{array}{cccc}
1 & \sqrt{2} & 1 & 0 \\
0 & \sqrt{2} & 2 & \sqrt{2}
\end{array}\right]
$$

Linear Transforms

A linear transform $\vec{y}=A \vec{x}$ maps vector space \vec{x} onto vector space \vec{y}. The absolute value of the determinant of A tells you how much the area of a unit circle is changed under the transformation.
For example: if $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$, then the unit circle in \vec{x} (which has an area of π) is mapped to an ellipse with an area of $\pi a b s(|A|)=2 \pi$.

Content

- Linear transforms
- Eigenvectors
- Eigenvalues
- Symmetric matrices
- Gaussian random vectors
- Principal component axes = eigenvectors of the covariance
- Gram matrix
- Singular value decomposition

Eigenvectors

- For a D-dimensional square matrix, there may be up to D different directions $\vec{x}=\vec{v}_{d}$ such that, for some scalar λ_{d},

$$
A \vec{v}_{d}=\lambda_{d} \vec{v}_{d}
$$

- For example: if $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$, then the eigenvectors and eigenvalues are

$$
\vec{v}_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], \lambda_{0}=1, \lambda_{1}=2
$$

- Those vectors are red and extra-thick, in the figure to the left. Notice that one of the vectors gets scaled by $\lambda_{0}=1$, but the other
 gets scaled by $\lambda_{1}=2$.

Eigenvectors

- An eigenvector is a direction, not just a vector. That means that if you multiply an eigenvector by any scalar, you get the same eigenvector: if $A \vec{v}_{d}=\lambda_{d} \vec{v}_{d}$, then it's also true that $c A \vec{v}_{d}=c \lambda_{d} \vec{v}_{d}$ for any scalar c.
- For example: the following are all the same eigenvector

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], \sqrt{2} \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right],-\vec{v}_{1}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
$$

- Since scale and sign don't matter, by convention, we normalize so that
- An eigenvector is always unit-length: $\left\|\vec{v}_{d}\right\|_{2}=1$ and
- the first nonzero element is non-negative: $v_{d}[0] \geq 0$

Eigenvectors

- Notice that only square matrices can have eigenvectors. For a non-square matrix, the equation $A \vec{v}_{d}=\lambda_{d} \vec{v}_{d}$ is impossible --- the dimension of the output is different from the dimension of the input.
- Not all matrices have eigenvectors! For example, a rotation matrix doesn't have any real-valued eigenvectors:

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Content

- Linear transforms
- Eigenvectors
- Eigenvalues
- Symmetric matrices
- Gaussian random vectors
- Principal component axes = eigenvectors of the covariance
- Gram matrix
- Singular value decomposition

Eigenvalues

$$
\begin{gathered}
A \vec{v}_{d}=\lambda_{d} \vec{v}_{d} \\
A \vec{v}_{d}=\lambda_{d} I \vec{v}_{d} \\
A \vec{v}_{d}-\lambda_{d} I \vec{v}_{d}=\overrightarrow{0} \\
\left(A-\lambda_{d} I\right) \vec{v}_{d}=\overrightarrow{0}
\end{gathered}
$$

That means that when you use the linear transform $\left(A-\lambda_{d} I\right)$ to transform the unit circle, the result has an area of:

$$
\pi|A-\lambda I|=0
$$

Example:

$$
|A-\lambda I|=\left|\begin{array}{cc}
1-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right|=2-3 \lambda+\lambda^{2}
$$

...which has roots at $\lambda_{0}=1, \lambda_{1}=2$.

Eigenvalues

Let's talk about that equation, $|A-\lambda I|=0$. Remember how the determinant is calculated, for example if

$$
\begin{gathered}
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \text {, then }|A-\lambda I|=0 \text { means that } \\
0=|A-\lambda I|=\left|\begin{array}{ccc}
a-\lambda & b & c \\
d & e-\lambda & f \\
g & h & i-\lambda
\end{array}\right|= \\
(a-\lambda)(e-\lambda)(i-\lambda)-b(d(i-\lambda)-g f)+c(d h-g(e-\lambda))
\end{gathered}
$$

- We assume that $a, b, c, d, e, f, g, h, i$ are all given in the problem statement. Only λ is unknown. So the equation $|A-\lambda I|=0$ is a D'th order polynomial in one variable.
- The fundamental theorem of algebra says that a D'th order polynomial ALWAYS has D roots (counting repeated roots and complex roots).

Eigenvalues

So a DxD matrix always has D eigenvalues (counting complex and repeated eigenvalues). This is true even if the matrix has no eigenvectors!! The eigenvalues are the D solutions of the polynomial equation

$$
|A-\lambda I|=0
$$

Summary:

- Not every square matrix has eigenvectors, but...
- Every DxD square matrix has exactly D eigenvalues (counting possibly complex eigenvalues, and repeated eigenvalues).

Content

- Linear transforms
- Eigenvectors
- Eigenvalues
- Symmetric matrices
- Gaussian random vectors
- Principal component axes = eigenvectors of the covariance
- Gram matrix
- Singular value decomposition

Left and right eigenvectors

We've been working with right eigenvectors and right eigenvalues:

$$
A \vec{v}_{d}=\lambda_{d} \vec{v}_{d}
$$

There may also be left eigenvectors, which are row vectors \vec{u}_{d}^{T}, and corresponding left eigenvalues μ_{d} :

$$
\vec{u}_{d}^{T} A=\kappa_{d} \vec{u}_{d}^{T}
$$

Eigenvectors on both sides of the matrix

You can do an interesting thing if you multiply the matrix by its eigenvectors both before and after:

$$
\vec{u}_{i}^{T} A \vec{v}_{j}=\vec{u}_{i}^{T}\left(\lambda_{j} \vec{v}_{j}\right)=\lambda_{j} \vec{u}_{i}^{T} \vec{v}_{j}
$$

... but ...

$$
\vec{u}_{i}^{T} A \vec{v}_{j}=\left(\kappa_{i} \vec{u}_{i}^{T}\right) \vec{v}_{j}=\mu_{i} \vec{u}_{i}^{T} \vec{v}_{j}
$$

There are only two ways that both of these things can be true. Either

$$
\kappa_{i}=\lambda_{j}
$$

... or ...

$$
\vec{u}_{i}^{T} \vec{v}_{j}=0
$$

Left and right eigenvectors must be paired!!

Remember that eigenvalues are the D solutions of the polynomial equation $\left|A-\lambda_{d} I\right|=0$. Almost always, these D solutions are all different! In that case, the left and right eigenvectors must be paired so that

$$
\vec{u}_{i}^{T} \vec{v}_{j}=0 \quad i \neq j
$$

and

$$
\kappa_{i}=\lambda_{i}=i^{\text {th }} \text { solution of }|A-\lambda I|=0
$$

Symmetric matrices: left == right

If A is symmetric ($A=A^{T}$), then the left and right eigenvectors and eigenvalues are the same, because

$$
\lambda_{d} \vec{u}_{d}^{T}=\vec{u}_{d}^{T} A=\left(A^{T} \vec{u}_{d}\right)^{T}=\left(A \vec{u}_{d}\right)^{T}
$$

... and that last term is only equal to $\lambda_{d} \vec{u}_{d}^{T}$ IF AND ONLY IF $\vec{u}_{d}=\vec{v}_{d}$

Symmetric matrices have orthonormal eigenvectors

So now, suppose A is symmetric:

$$
\vec{v}_{i}^{T} A \vec{v}_{j}=\vec{v}_{i}^{T}\left(\lambda_{j} \vec{v}_{j}\right)=\lambda_{j} \vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}\lambda_{j}, & i=j \\ 0, & i \neq j\end{cases}
$$

In other words, if a symmetric matrix has D eigenvectors with distinct eigenvalues, then its eigenvectors form an orthonormal basis:

$$
\vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Symmetric matrices have orthonormal eigenvectors

So now, suppose A is symmetric:

$$
\vec{v}_{i}^{T} A \vec{v}_{j}=\vec{v}_{i}^{T}\left(\lambda_{j} \vec{v}_{j}\right)=\lambda_{j} \vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}\lambda_{j}, & i=j \\ 0, & i \neq j\end{cases}
$$

In other words, if a symmetric matrix has D eigenvectors with distinct eigenvalues, then its eigenvectors form an orthonormal basis:

$$
V^{T} V=I, \quad V=\left[\begin{array}{lll}
\vec{v}_{0} & \ldots & \vec{v}_{D-1}
\end{array}\right]
$$

Also,
$V V^{T}=V I V^{T}=V V^{T} V V^{T}=\left(V V^{T}\right)^{2}$, which is only possible if $V V^{T}=I$.

Eigenvectors orthogonalize a symmetric matrix:

So now, suppose A is symmetric:

$$
\vec{v}_{i}^{T} A \vec{v}_{j}=\vec{v}_{i}^{T}\left(\lambda_{j} \vec{v}_{j}\right)=\lambda_{j} \vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}\lambda_{j}, & i=j \\ 0, & i \neq j\end{cases}
$$

In other words, if a symmetric matrix has D eigenvectors with distinct eigenvalues, then its eigenvectors orthogonalize A :

$$
V^{T} A V=\Lambda, \quad \Lambda=\left[\begin{array}{ccc}
\lambda_{0} & 0 & 0 \\
0 & \ldots & 0 \\
0 & 0 & \lambda_{D-1}
\end{array}\right]
$$

A symmetric matrix is the weighted sum of its eigenvectors:
So now, suppose A is symmetric:

$$
\vec{v}_{i}^{T} A \vec{v}_{j}=\vec{v}_{i}^{T}\left(\lambda_{j} \vec{v}_{j}\right)=\lambda_{j} \vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}\lambda_{j}, & i=j \\ 0, & i \neq j\end{cases}
$$

In other words, if a symmetric matrix has D eigenvectors with distinct eigenvalues, then it equals the weighted sum of its eigenvectors:

$$
A=V V^{T} A V V^{T}=V \Lambda V^{T}=\sum_{d=0}^{D-1} \lambda_{d} \vec{v}_{d} \vec{v}_{d}^{T}
$$

Summary: properties of symmetric matrices
If A is symmetric with D eigenvectors, and D distinct eigenvalues, then

$$
\begin{aligned}
A & =V \Lambda V^{T} \\
\Lambda & =V^{T} A V \\
V V^{T} & =V^{T} V=I
\end{aligned}
$$

Content

- Linear transforms
- Eigenvectors
- Eigenvalues
- Symmetric matrices
- Gaussian random vectors
- Principal component axes = eigenvectors of the covariance
- Gram matrix
- Singular value decomposition

Scalar Gaussian Random Variables

Gaussian Random Vector
Gaussian RV, mu=[1,1]

$$
\begin{gathered}
\vec{x}=\left[\begin{array}{c}
x_{0} \\
\vdots \\
x_{D-1}
\end{array}\right], \vec{\mu}=\left[\begin{array}{c}
\mu_{0} \\
\vdots \\
\mu_{D-1}
\end{array}\right] \\
\vec{\mu}=E[\vec{x}]
\end{gathered}
$$

Gaussian Random Vector

$$
\begin{aligned}
& R=\left[\begin{array}{ccc}
\rho_{00} & \rho_{01} & \ddots \\
\rho_{10} & \ddots & \rho_{D-2, D-1} \\
\ddots & \rho_{D-1, D-2} & \rho_{D-1, D-1}
\end{array}\right] \\
& \rho_{i j}=E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right] \\
& \sigma_{i}^{2}=\rho_{i i}=E\left[\left(x_{i}-\mu_{i}\right)^{2}\right]
\end{aligned}
$$

Gaussian Random Vector
Gaussian RV, $\mathrm{R}=[1.5,0.5 ; 0.5,1.5]$

$$
R=E\left[(\vec{x}-\vec{\mu})(\vec{x}-\vec{\mu})^{T}\right]
$$

Sample Mean, Sample Covariance

In the real world, we don't know $\vec{\mu}$ and R ! If we have M instances \vec{x}_{m} of the Gaussian, we can estimate $\vec{\mu}$ and R as

$$
\begin{gathered}
\vec{\mu}=\frac{1}{M} \sum_{m=0}^{M-1} \vec{x}_{m} \\
R=\frac{1}{M-1} \sum_{m=0}^{M-1}\left(\vec{x}_{m}-\vec{\mu}\right)\left(\vec{x}_{m}-\vec{\mu}\right)^{T}
\end{gathered}
$$

Sample mean and sample covariance are not the same as the real mean and covariance, but we'll use the same letters for them ($\vec{\mu}$ and R) unless the
 problem requires us to distinguish.

Content

- Linear transforms
- Eigenvectors
- Eigenvalues
- Symmetric matrices
- Gaussian random vectors
- Principal component axes = eigenvectors of the covariance
- Gram matrix
- Singular value decomposition

Sample Covariance

$$
\begin{gathered}
R=\frac{1}{M-1} \sum_{m=0}^{M-1}\left(\vec{x}_{m}-\vec{\mu}\right)\left(\vec{x}_{m}-\vec{\mu}\right)^{T} \\
=\frac{1}{M-1} X^{T} X
\end{gathered}
$$

...where X is the centered data matrix,

$$
X=\left[\begin{array}{c}
\left(\vec{x}_{0}-\vec{\mu}\right)^{T} \\
\vdots \\
\left(\vec{x}_{M-1}-\vec{\mu}\right)^{T}
\end{array}\right]
$$

Centered Data Matrix

$$
X=\left[\begin{array}{c}
\left(\vec{x}_{0}-\vec{\mu}\right)^{T} \\
\vdots \\
\left.\vec{x}_{M-1}-\vec{\mu}\right)^{T}
\end{array}\right]
$$

Instances \vec{x}_{m} of a Gaussian: Arrows show $\vec{x}_{m}-\vec{\mu}$

Principal Component Axes

$X^{T} X$ is symmetric!
Therefore,

$$
X^{T} X=V \Lambda V^{T}
$$

$V=\left[\begin{array}{lll}\vec{v}_{0} & \ldots & \vec{v}_{D-1}\end{array}\right]$ are called the principal component axes, or principal component directions.

Scaled Principal Component Axes $\vec{v}_{0} \sqrt{\lambda_{0}}$ and $\vec{v}_{1} \sqrt{\lambda_{1}}$

Principal Components

$$
\begin{gathered}
X^{T} X=V \Lambda V^{T} \\
V^{T} X^{T} X V=V^{T} V \Lambda V^{T} V=\Lambda \\
Y^{T} Y=\Lambda
\end{gathered}
$$

...where...

$$
Y=\left[\begin{array}{c}
\vec{y}_{0}^{T} \\
\vdots \\
\vec{y}_{D-1}^{T}
\end{array}\right]=\left[\begin{array}{c}
\left(\vec{x}_{0}-\vec{\mu}\right)^{T} V \\
\vdots \\
\left(\vec{x}_{M-1}-\vec{\mu}\right)^{T} V
\end{array}\right]
$$

\vec{y}_{m} is the vector of principal components of \vec{x}_{m}. The principal components are:

$$
y_{m d}=\left(\vec{x}_{m}-\vec{\mu}\right)^{T} \vec{v}_{d}
$$

Principal Components are Uncorrelated

Basics of matrix notation. This equation: $Y^{T} Y=\Lambda$.
Means:

$$
\sum_{m=0}^{M-1} \vec{y}_{m} \vec{y}_{m}{ }^{T}=\left[\begin{array}{ccc}
\lambda_{0} & 0 & 0 \\
0 & \ldots & 0 \\
0 & 0 & \lambda_{D-1}
\end{array}\right]
$$

In other words,

$$
E\left[y_{i} y_{j}\right] \widetilde{\propto} \sum_{m=0}^{M-1} y_{m i} y_{m j}= \begin{cases}\lambda_{i}, & i=j \\ 0, & i \neq j\end{cases}
$$

(the symbol $\widetilde{\alpha}$ means "approximately proportional to")

Eigenvalue \propto Variance of the Principal Component

More precisely, the sample covariance of principal components y_{i} and y_{j} is 0 , unless $i=j$, in which case

$$
\frac{1}{M-1} \sum_{m=0}^{M-1} y_{m i}^{2}=\frac{\lambda_{i}}{M-1}
$$

Eigenvalue $=$ Energy of the Principal Component

The total dataset energy of y_{i} is

$$
\sum_{m=0}^{M-1} y_{m i}^{2}=\lambda_{i}
$$

But remember that $\left\|\vec{v}_{d}\right\|_{2}=1$. Therefore, the total dataset energy is the same, whether you calculate it in the original image domain, or in the PCA domain:

$$
\sum_{m=0}^{M-1} \sum_{d=0}^{D-1}\left(x_{m d}-\mu_{d}\right)^{2}=\sum_{m=0}^{M-1} \sum_{i=0}^{D-1} y_{m i}^{2}=\sum_{i=0}^{D-1} \lambda_{i}
$$

Energy Spectrum = Fraction of Energy Explained

The "energy spectrum" is energy as a function of basis vector index. There are a few ways we could define it, but one useful definition is:

$$
\begin{gathered}
E[k]=\frac{\sum_{m=0}^{M-1} \sum_{i=0}^{k-1} y_{m i}^{2}}{\sum_{m=0}^{M-1} \sum_{d=0}^{D-1}\left(x_{m d}-\mu_{d}\right)^{2}} \\
=\frac{\sum_{i=0}^{k-1} \lambda_{i}}{\sum_{i=0}^{D-1} \lambda_{i}}
\end{gathered}
$$

Content

- Linear transforms
- Eigenvectors
- Eigenvalues
- Symmetric matrices
- Gaussian random vectors
- Principal component axes = eigenvectors of the covariance
- Gram matrix
- Singular value decomposition

Gram Matrix

- $X^{T} X$ is usually called the sum-ofsquares matrix. $\frac{1}{M-1} X^{T} X$ is the sample covariance.
- $G=X X^{T}$ is called the gram matrix. It's $(i, j)^{\text {th }}$ element is the dot product between the $i^{\text {th }}$ and $j^{\text {th }}$ data:

$$
g_{i j}=\left(\vec{x}_{i}-\vec{\mu}\right)^{T}\left(\vec{x}_{j}-\vec{\mu}\right)
$$

Eigenvectors of the Gram Matrix

$X X^{T}$ is also symmetric! So it has orthonormal eigenvectors:

$$
\begin{gathered}
X X^{T}=U \Lambda U^{T} \\
U U^{T}=U^{T} U=I
\end{gathered}
$$

$X^{T} X$ and $X X^{T}$ have the same eigenvalues (Λ) but different eigenvectors (V vs. U).

Why the Gram matrix is useful...

Suppose (as in mp2) that $\mathrm{D}=4096$ pixels, but that $\mathrm{M}=48$ images. Then, in order to perform this eigenvalue analysis:

$$
X^{T} X=V \Lambda V^{T}
$$

... requires factoring a 4096-order polynomial ($\left|X^{T} X-\lambda I\right|=0$), then solving 4096 simultaneous linear equations in 4096 unknowns to find each eigenvector $\left(X^{T} X \vec{v}_{d}=\lambda_{d} \vec{v}_{d}\right)$. Even if you use the canned function np.linalg.eig to solve it for you, it's going to take a LOT of computation. On the other hand,

$$
X X^{T}=U \Lambda U^{T}
$$

...is $48^{\text {th }}$ order. Educated experts agree: $48<4096$.

Content

- Linear transforms
- Eigenvectors
- Eigenvalues
- Symmetric matrices
- Gaussian random vectors
- Principal component axes = eigenvectors of the covariance
- Gram matrix
- Singular value decomposition

Singular Values

- Both $X^{T} X$ and $X X^{T}$ are positive semi-definite, meaning that their eigenvalues are non-negative, $\lambda_{d} \geq 0$.
- The "Singular Values" are defined to be the square root of the eigenvalues, $s_{d}=\sqrt{\lambda_{d}}$.

$$
S=\left[\begin{array}{ccc}
S_{0} & 0 & 0 \\
0 & \ldots & 0 \\
0 & 0 & s_{D-1}
\end{array}\right], \quad \Lambda=S S=\left[\begin{array}{ccc}
s_{0}^{2} & 0 & 0 \\
0 & \ldots & 0 \\
0 & 0 & s_{D-1}^{2}
\end{array}\right]
$$

Singular Value Decomposition

$$
\begin{gathered}
(M-1) R=X^{T} X=V \Lambda V^{T}=V S S V^{T} \\
G=X X^{T}=U \Lambda U^{T}=U S S U^{T}
\end{gathered}
$$

Singular Value Decomposition

$$
\begin{aligned}
& X^{T} X=V S S V^{T}=V S I S V^{T}=V S U^{T} U S V^{T} \\
& X X^{T}=U S S U^{T}=U S I S U^{T}=U S V^{T} V S U^{T}
\end{aligned}
$$

Singular Value Decomposition

OK. Here is a magical fact, which is not taught in introductory linear algebra courses, and I don't know why. ANY data matrix, X , can be written as $X=U S V^{T}$.

- $U=\left[\begin{array}{lll}\vec{u}_{0} & \ldots & \vec{u}_{M-1}\end{array}\right]$ are the eigenvectors of $X X^{T}$.
- $V=\left[\begin{array}{lll}\vec{v}_{0} & \ldots & \vec{v}_{D-1}\end{array}\right]$ are the eigenvectors of $X^{T} X$.
$\cdot S=\left[\begin{array}{ccccc}s_{0} & 0 & 0 & 0 & 0 \\ 0 & \ldots & 0 & 0 & 0 \\ 0 & 0 & s_{\min (D, M)-1} & 0 & 0\end{array}\right]$ are the singular values.
- S has some all-zero columns if $M>D$, or all-zero rows if $M<D$.

What np.linalg.svd does

First, decide whether you want to find the eigenvectors of $X X^{T}$ or of $X^{T} X$: just check to see which one is larger. If you discover that $4096>48$, then compute $X X^{T}=U \Lambda U^{T}$, and $S=\sqrt{\Lambda}$. Then you find V as follows:

$$
\begin{gathered}
X^{T}=V S U^{T} \\
X^{T} U=V S \\
X^{T} U S^{-1}=V
\end{gathered}
$$

Methods that solve mp2

- Direct eigenvector analysis of $X^{T} X=V \Lambda V^{T}$ gives the right answer, but takes a very long time. When I tried this, it timed-out the autograder.
- Applying np.linalg.svd to X gives the right answer, very fast.
- This also works, and is actually just as fast as np.linalg.svd (I tested it): you can apply np.linalg.eig to the gram matrix $\mathrm{G}=X X^{T}$, then compute $V^{T}=S^{-1} U^{T} X$.

