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Notation

Today’s lecture will try to use notation similar to the Wikipedia
page for LSTM (and similar to MP7). This notation is different
from what we’ve used before, so here are some symbols:

x [t] = input at time t

y [t] = target/desired output

c[t] = excitation at time t OR LSTM cell

h[t] = activation at time t OR LSTM output

u = feedback coefficient

w = feedforward coefficient

b = bias
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Running Example: a Pocket Calculator

The rest of this lecture will refer to toy application called “pocket
calculator.”

Pocket Calculator

When x [t] > 0, add it to the current tally:
c[t] = c[t − 1] + x [t].

When x [t] = 0,
1 Print out the current tally, h[t] = c[t − 1], and then
2 Reset the tally to zero, c[t] = 0.

Example Signals

Input: x [t] = 1, 2, 1, 0, 1, 1, 1, 0

Target Output: y [t] = 0, 0, 0, 4, 0, 0, 0, 3
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Pocket Calculator

When x [t] > 0, add it to
the current tally:
c[t] = c[t − 1] + x [t].

When x [t] = 0,
1 Print out the current

tally, h[t] = c[t − 1],
and then

2 Reset the tally to zero,
c[t] = 0.

Pocket Calculator
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One-Node One-Tap Linear RNN

Suppose that we have a very simple RNN:

Excitation: c[t] = x [t] + uh[t − 1]

Activation: h[t] = σh (c[t])

where σh() is some feedback nonlinearity. In this simple example,
let’s just use σh(c[t]) = c[t], i.e., no nonlinearity.
GOAL: Find u so that h[t] ≈ y [t]. In order to make the problem
easier, we will only score an “error” when y [t] 6= 0:

E =
1

2

∑
t:y [t]>0

(h[t]− y [t])2
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RNN: u = 1?

Obviously, if we want to just
add numbers, we should just
set u = 1. Then the RNN is
computing

Excitation: c[t] = x [t] + h[t − 1]

Activation: h[t] = σh (c[t])

That works until the first
zero-valued input. But then it
just keeps on adding.

RNN with u = 1
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RNN: u = 0.5?

Can we get decent results using
u = 0.5?

Advantage: by the time
we reach x [t] = 0, the
sum has kind of leaked
away from us (c[t] ≈ 0),
so a hard-reset is not
necessary.

Disadvantage: by the time
we reach x [t] = 0, the
sum has kind of leaked
away from us (h[t] ≈ 0).

RNN with u = 0.5
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Gradient Descent

c[t] = x [t] + uh[t − 1]

h[t] = σh (c[t])

Let’s try initializing u = 0.5, and then performing gradient descent
to improve it. Gradient descent has five steps:

1 Forward Propagation: c[t] = x [t] + uh[t − 1], h[t] = c[t].

2 Synchronous Backprop: ε[t] = ∂E/∂c[t].

3 Back-Prop Through Time: δ[t] = dE/dc[t].

4 Weight Gradient: dE/du =
∑

t δ[t]h[t − 1]

5 Gradient Descent: u ← u − ηdE/du
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Gradient Descent

Excitation: c[t] = x [t] + uh[t − 1]

Activation: h[t] = σh (c[t])

Error: E =
1

2

∑
t:y [t]>0

(h[t]− y [t])2

So the back-prop stages are:

Synchronous Backprop: ε[t] =
∂E

∂c[t]
=

{
(h[t]− y [t]) y [t] > 0
0 otherwise

BPTT: δ[t] =
dE

dc[t]
= ε[t] + uδ[t + 1]

Wt Grad:
dE

du
=
∑
t

δ[t]h[t − 1]
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Backprop Stages

ε[t] =

{
(h[t]− y [t]) y [t] > 0
0 otherwise

δ[t] = ε[t] + uδ[t + 1]

dE

du
=
∑
t

δ[t]h[t − 1]

Backprop Stages, u = 0.5
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Vanishing Gradient and Exploding Gradient

Notice that, with |u| < 1, δ[t] tends to vanish exponentially
fast as we go backward in time. This is called the vanishing
gradient problem. It is a big problem for RNNs with long
time-dependency, and for deep neural nets with many layers.

If we set |u| > 1, we get an even worse problem, sometimes
called the exploding gradient problem.
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RNN, u = 1.7

c[t] = x [t] + uh[t − 1]

RNN, u = 1.7

δ[t] = ε[t] + uδ[t + 1]
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Hochreiter and Schmidhuber’s Solution: The Forget Gate

Instead of multiplying by the same weight, u, at each time step,
Hochreiter and Schmidhuber proposed: let’s make the feedback
coefficient a function of the input!

Excitation: c[t] = x [t] + f [t]h[t − 1]

Activation: h[t] = σh (c[t])

Forget Gate: f [t] = σg (wf x [t] + uf h[t − 1] + bf )

Where σh() and σg () might be different nonlinearities. In
particular, it’s OK for σh() to be linear (σh(c) = c), but σg ()
should be clipped so that 0 ≤ f [t] ≤ 1, in order to avoid gradient
explosion.
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The Forget-Gate Nonlinearity

The forget gate is

f [t] = σg (wf x [t] + uf h[t − 1] + bf )

where σg () is some nonlinearity such that 0 ≤ σg () ≤ 1. Two such
nonlinearities are worth knowing about.
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Forget-Gate Nonlinearity #1: CReLU

The first useful nonlinearity is the CReLU (clipped rectified linear
unit), defined as

σg (wf x + uf h + bf ) = min (1,max (0,wf x + uf h + bf ))

The CReLU is particularly useful for knowledge-based
design. That’s because σ(1) = 1 and σ(0) = 0, so it is
relatively easy to design the weights wf , uf , and bf to get the
results you want.

The CReLU is not very useful, though, if you want to choose
your weights using gradient descent. What usually happens
is that wf grows larger and larger for the first 2-3 epochs of
training, and then suddenly wf is so large that
σ̇(wf x + uf h + bf ) = 0 for all training tokens. At that point,
the gradient is dE/dw = 0, so further gradient-descent
training is useless.
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Forget-Gate Nonlinearity #1: Logistic Sigmoid

The second useful nonlinearity is the logistic sigmoid, defined as:

σg (wf x + uf h + bf ) =
1

1 + e−(wf x+uf h+bf )

The logistic sigmoid is particularly useful for gradient
descent. That’s because its gradient is defined for all values
of wf . In fact, it has a really simple form, that can be written
in terms of the output: σ̇ = σ(1− σ).

The logistic sigmoid is not as useful for knowledge-based
design. That’s because 0 < σ < 1: as x → −∞, σ(x)→ 0,
but it never quite reaches it. Likewise as x →∞, σ(x)→ 1,
but it never quite reaches it.
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Pocket Calculator

When x [t] > 0,
accumulate the input, and
print out nothing.

When x [t] = 0, print out
the accumulator, then
reset.

. . . but the “print out nothing”
part is not scored, only the
accumulation. Furthermore,
nonzero input is always
x [t] ≥ 1.
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Pocket Calculator

With zero error, we can
approximate the pocket
calculator as

When x [t] ≥ 1,
accumulate the input.

When x [t] = 0, print out
the accumulator, then
reset.

E = 1
2

∑
t:y [t]>0 (h[t]− y [t])2 = 0
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Forget-Gate Implementation of the Pocket Calculator

It seems like we can approximate the pocket calculator as:

When x [t] ≥ 1, accumulate the input: c[t] = x [t] + h[t − 1].

When x [t] = 0, print out the accumulator, then reset:
c[t] = x [t].

So it seems that we just want the forget gate set to

f [t] =

{
1 x [t] ≥ 1
0 x [t] = 0

This can be accomplished as

f [t] = CReLU (x [t]) = max (0,min (1, x [t]))
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Forget Gate Implementation of
the Pocket Calculator

c[t] = x [t] + f [t]h[t − 1]

h[t] = c[t]

f [t] = CReLU (x [t])

Forward Prop
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Forget Gate Implementation of
the Pocket Calculator

c[t] = x [t] + f [t]h[t − 1]

h[t] = c[t]

f [t] = CReLU (x [t])

Back Prop
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What Went Wrong?

The forget gate correctly turned itself on (remember the past)
when x [t] > 0, and turned itself off (forget the past) when
x [t] = 0.

Unfortuately, we don’t want to forget the past when x [t] = 0.
We want to forget the past on the next time step after
x [t] = 0.

Coincidentally, we also don’t want any output when x [t] > 0.
The error criterion doesn’t score those samples, but maybe it
should.
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Long Short-Term Memory (LSTM)

The LSTM solves those problems by defining two types of memory,
and three types of gates. The two types of memory are

1 The “cell,” c[t], corresponds to the excitation in an RNN.

2 The “output” or “prediction,” h[t], corresponds to the
activation in an RNN.

The three gates are:

1 The cell remembers the past only when the forget gate is on,
f [t] = 1.

2 The cell accepts input only when the input gate is on, i [t] = 1.

3 The cell is output only when the output gate is on, o[t] = 1.
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Long Short-Term Memory (LSTM)

The three gates are:

1 The cell remembers the past only when the forget gate is on,
f [t] = 1.

2 The cell accepts input only when the input gate is on, i [t] = 1.

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

3 The cell is output only when the output gate is on, o[t] = 1.

h[t] = o[t]c[t]
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Characterizing Human Memory

LONG
TERM

SHORT
TERM

INPUT GATE

OUTPUT GATE

PERCEPTION

ACTION

Pr {remember} = pLTMe−t/TLTM + (1− pLTM)e−t/TSTM
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When Should You Remember?

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

h[t] = o[t]c[t]

1 The forget gate is a function of current input and past output,
f [t] = σg (wf x [t] + uf h[t − 1] + bf )

2 The input gate is a function of current input and past output,
i [t] = σg (wix [t] + uih[t − 1] + bi )

3 The output gate is a function of current input and past
output, o[t] = σg (wox [t] + uoh[t − 1] + bo)
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Neural Network Model: LSTM

i [t] = input gate = σg (wix [t] + uih[t − 1] + bi )

o[t] = output gate = σg (wox [t] + uoh[t − 1] + bo)

f [t] = forget gate = σg (wf x [t] + uf h[t − 1] + bf )

c[t] = memory cell = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

h[t] = output = o[t]c[t]
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Example: Pocket Calculator

i [t] = CReLU(1)

o[t] = CReLU(1− x [t])

f [t] = CReLU(1− h[t − 1])

c[t] = f [t]c[t − 1] + i [t]x [t]

h[t] = o[t]c[t]

Back Prop
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Backprop for a normal RNN

In a normal RNN, each epoch of gradient descent has five steps:

1 Forward-prop: find the node excitation and activation,
moving forward through time.

2 Synchronous backprop: find the partial derivative of error
w.r.t. node excitation at each time, assuming all other time
steps are constant.

3 Back-prop through time: find the total derivative of error
w.r.t. node excitation at each time.

4 Weight gradient: find the total derivative of error w.r.t.
each weight and each bias.

5 Gradient descent: adjust each weight and bias in the
direction of the negative gradient
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Backprop for an LSTM

An LSTM differs from a normal RNN in that, instead of just one
memory unit at each time step, we now have two memory units
and three gates. Each of them depends on the previous time-step.
Since there are so many variables, let’s stop back-propagating to
excitations. Instead, we’ll just back-prop to compute the derivative
of the error w.r.t. each of the variables:

εh[t] =
∂E

∂h[t]
εc [t] =

∂E

∂c[t]
, εi [t] =

∂E

∂i [t]
, εo [t] =

∂E

∂o[t]
, εf [t] =

∂E

∂f [t]

δh[t] =
dE

dh[t]
δc [t] =

dE

dc[t]
, δi [t] =

dE

di [t]
, δo [t] =

dE

do[t]
, δf [t] =

dE

df [t]
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Backprop for an LSTM

In an LSTM, we’ll implement each epoch of gradient descent with
five steps:

1 Forward-prop: find all five of the variables at each time step,
moving forward through time.

2 Synchronous backprop: find the partial derivative of error
w.r.t. h[t].

3 Back-prop through time: find the total derivative of error
w.r.t. each of the five variables at each time, starting with
h[t].

4 Weight gradient: find the total derivative of error w.r.t.
each weight and each bias.

5 Gradient descent: adjust each weight and bias in the
direction of the negative gradient
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Synchronous Back-Prop: the Output

Suppose the error term is

E =
1

2

∞∑
t=−∞

(h[t]− y [t])2

Then the first step, in back-propagation, is to calculate the partial
derivative w.r.t. the prediction term h[t]:

εh[t] =
∂E

∂h[t]
= h[t]− y [t]
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Synchronous Back-Prop: the other variables

Remember that the error is defined only in terms of the output,
h[t]. So, actually, partial derivatives with respect to the other
variables are all zero!

εi [t] =
∂E

∂i [t]
= 0

εo [t] =
∂E

∂o[t]
= 0

εf [t] =
∂E

∂f [t]
= 0

εc [t] =
∂E

∂c[t]
= 0
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Back-Prop Through Time

Back-prop through time is really tricky in an LSTM, because four
of the five variables depend on the previous time step, either on
h[t − 1] or on c[t − 1]:

i [t] = σg (wix [t] + uih[t − 1] + bi )

o[t] = σg (wox [t] + uoh[t − 1] + bo)

f [t] = σg (wf x [t] + uf h[t − 1] + bf )

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

h[t] = o[t]c[t]
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Back-Prop Through Time

Taking the partial derivative of each variable at time t w.r.t. the
variables at time t − 1, we get

∂i [t]

∂h[t − 1]
= σ̇g (wix [t] + uih[t − 1] + bi )ui

∂o[t]

∂h[t − 1]
= σ̇g (wox [t] + uoh[t − 1] + bo)uo

∂o[t]

∂h[t − 1]
= σ̇g (wf x [t] + uf h[t − 1] + bf )uf

∂c[t]

∂h[t − 1]
= i [t]σ̇h (wcx [t] + uch[t − 1] + bc) uc

∂c[t]

∂c[t − 1]
= f [t]
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Back-Prop Through Time

Using the standard rule for partial and total derivatives, we get a
really complicated rule for h[t]:

dE

dh[t]
=

∂E

∂h[t]
+

dE

di [t + 1]

∂i [t + 1]

∂h[t]
+

dE

do[t + 1]

∂o[t + 1]

∂h[t]

+
dE

df [t + 1]

∂f [t + 1]

∂h[t]
+

dE

dc[t + 1]

∂c[t + 1]

∂h[t]

The rule for c[t] is a bit simpler, because ∂E/∂c[t] = 0, so we
don’t need to include it:

dE

dc[t]
=

dE

dh[t]

∂h[t]

∂c[t]
+

dE

dc[t + 1]

∂c[t + 1]

∂c[t]
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Back-Prop Through Time

If we define δh[t] = dE/dh[t], and so on, then we have

δh[t] = εh[t] + δi [t + 1]σ̇g (wix [t + 1] + uih[t] + bi )ui

+ δo [t + 1]σ̇g (wox [t + 1] + uoh[t] + bo)uo

+ δf [t + 1]σ̇g (wf x [t + 1] + uf h[t] + bf )uf

+ i [t + 1]δc [t + 1]σ̇h (wcx [t + 1] + uch[t] + bc) uc

The rule for c[t] is a bit simpler:

δc [t] = δh[t]o[t] + δc [t + 1]f [t + 1]
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Back-Prop Through Time

BPTT through the gates is simplified in the same way as for the
cell, i.e., since there is no direct dependence of the error on any
gate, we only have to deal with the indirect dependences:

dE

do[t]
=

dE

dh[t]

∂h[t]

∂o[t]

dE

di [t]
=

dE

dc[t]

∂c[t]

∂i [t]

dE

df [t]
=

dE

dc[t]

∂c[t]

∂f [t]

where the partial derivatives are defined by the forward equations:

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

h[t] = o[t]c[t]
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Back-Prop Through Time

The partial derivatives are defined by the forward equations:

c[t] = f [t]c[t − 1] + i [t]σh (wcx [t] + uch[t − 1] + bc)

h[t] = o[t]c[t]

so:

∂h[t]

∂o[t]
= c[t]

∂h[t]

∂i [t]
= σh (wcx [t] + uch[t − 1] + bc)

∂h[t]

∂f [t]
= c[t − 1]
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Back-Prop Through Time

BPTT through the gates is simplified in the same way as for the
cell, i.e., since there is no direct dependence of the error on any
gate, we only have to deal with the indirect dependences:

δo [t] = δh[t]c[t]

δi [t] = δc [t]σh (wcx [t] + uch[t − 1] + bc)

δf [t] = δc [t]c[t − 1]
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RNNs suffer from either exponentially decreasing memory (if
|w | < 1) or exponentially increasing memory (if |w | > 1).
This is one version of a more general problem sometimes
called the gradient vanishing problem.

The forget gate solves that problem by making the feedback
coefficient a function of the input.

LSTM defines two types of memory (cell=excitation, and
output=activation), and three types of gates (input, output,
forget).

Each epoch of LSTM training has the same steps as in a
regular RNN:

1 Forward propagation: find h[t].
2 Synchronous backprop: find the time-synchronous partial

derivatives ε[t].
3 BPTT: find the total derivatives δ[t].
4 Weight gradients
5 Gradient descent
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