Recurrent Neural Nets

ECE 417: Multimedia Signal Processing
Mark Hasegawa-Johnson

University of lllinois

November 19, 2019

I

1867

@ Linear Time Invariant Filtering: FIR & IIR

© Nonlinear Time Invariant Filtering: CNN & RNN
© Back-Propagation Training for CNN and RNN
@ Back-Prop Through Time

© Vanishing/Exploding Gradient

@ Gated Recurrent Units

@ Long Short-Term Memory (LSTM)

© Conclusion

FIR/IIR
Outline

@ Linear Time Invariant Filtering: FIR & IIR

FIR/IIR
o0

Basics of DSP: Filtering

ylnj= Y hlmx[n — m]

m=—0oQ

Y(z) = H(2)X(2)

FIR/IIR
(o] le)

Finite Impulse Response (FIR)

N-1

yln] = hlmlx[n — m]
m=0

The coefficients, h[m], are chosen in order to optimally position
the N — 1 zeros of the transfer function, ry, defined according to:

N—-1 N-1
H(z) =Y hlmlz=" =h0] [] 1 - nz?)
m=0 k=1

FIR/IIR

ooe

Infinite Impulse Response (IIR)

N-1 M—1
y[n] = Z bmx[n — m] + Z amy[n— m]
m=0 m=1

The coefficients, b, and ap,, are chosen in order to optimally
position the N — 1 zeros and M — 1 poles of the transfer function,
ri and pg, defined according to:

> g bmz ™" i (L—nz)
H(z) = M—1_ _,, P05mM-1)
1= me1amZ k1 (1 —piz=t)

CNN/RNN
Outline

© Nonlinear Time Invariant Filtering: CNN & RNN

Convolutional Neural Net = Nonlinear(FIR)

N—-1
yinl=g (Z hlm]x[n — m])

m=0
The coefficients, h[m], are chosen to minimize some kind of error.

For example, suppose that the goal is to make y[n] resemble a
target signal t[n]; then we might use

1Y)
E=33" (vl — tln))
n=0
and choose JE
h[n] < h[n]

e

Recurrent Neural Net (RNN) = Nonlinear(lIR)

M-1
yinl=¢g (X[n] +) amyln - m])
m=1

The coefficients, a,, are chosen to minimize the error. For
example, suppose that the goal is to make y[n] resemble a target
signal t[n]; then we might use

N

1
E =23 (lnl - ¢n])?
n=0
and choose
dE
am < am

777@

Back-Prop
Outline

© Back-Propagation Training for CNN and RNN

Back-Prop
©0000

Review: Excitation and Activation

@ The activation of a hidden node is the output of the
nonlinearity (for this reason, the nonlinearity is sometimes
called the activation function). For example, in a
fully-connected network with outputs z;, weights v, bias vy,
nonlinearity g(), and hidden node activations y, the activation
of the /™™ output node is

P
z1=8 (V/o + Z V/kyk>
k=1

@ The excitation of a hidden node is the input of the
nonlinearity. For example, the excitation of the node above is

P
e = Vo + Z VikYk
k=1

Back-Prop
0®000

Backprop = Derivative w.r.t. Excitation

@ The excitation of a hidden node is the input of the
nonlinearity. For example, the excitation of the node above is

p
e = vy + E VikYk
k=1

@ The gradient of the error w.r.t. the weight is

dE
— = €
vy 1Yk
where ¢, is the derivative of the error w.r.t. the /*! excitation:

dE

€ = —
de/

Back-Prop
00®00

Backprop for Fully-Connected Network

Suppose we have a fully-connected network, with inputs X, weight
matrices U and V/, nonlinearities g() and h(), and output z:

€k = Uko + Z UkjXj
j

vk = g (&)

e = vijo + Z VikYk
k

zZ] = h (e/)

Then the back-prop gradients are the derivatives of E with respect
to the excitations at each node:

e
‘= de/

dE
Ok

:Tq

Back-Prop
000®0

Back-Prop in a CNN

Suppose we have a convolutional neural net, defined by

N—-1

e[n] = > h[m]x[n — m]
m=0

y[n] = g (e[n])

then

dh[m] Z S[n)x[n — m]

where 0[n] is the back-prop gradient, defined by

5[]_T

Back-Prop
ooo0e

Back-Prop in an RNN

Suppose we have a recurrent neural net, defined by

M-1

eln] = xlnl + 3 amy[n — m]
m=1
y[n] = g (e[n])

then

= dlnlyln—m]

where y[n — m] is calculated by forward-propagation, and then §[n]
is calculated by back-propagation as

Outline

@ Back-Prop Through Time

BPTT
©000000

Partial vs. Full Derivatives

For example, suppose we want y[n] to be as close as possible to
some target signal t[n]:

E= 23 (o]~ eln)y

Notice that E depends on y[n] in many different ways:

dE. OE n dE 0Oy[n+1] dE 0Oy[n+2]
dy[n] ~ dy[n] ~ dy[n+1] dy[n] ~ dy[n+2] dy[n]

BPTT
0®00000

Partial vs. Full Derivatives

In general,
dE_ OE N i dE dy[n+ m]
dy[n] ~ Odyln] = “= dy[n+m] Oyln]
where
o -9E_is the total derivative, and includes all of the different

dy|n]
ways in which E depends on y[n].

° 8}2)[;;;]'"] is the partial derivative, i.e., the change in y[n + m]
per unit change in y[n] if all of the other variables (all other

values of y[n + k]) are held constant.

BPTT
00®0000

Partial vs. Full Derivatives

So for example, if
1
E= 33" (vl — ¢l
n
then the partial derivative of E w.r.t. y[n] is

OE
dy|n]

and the total derivative of E w.r.t. y[n] is

=yl tln]

dE . dE dy[n+ m]
AL ¥~ rar a7

BPTT
000®000

Partial vs. Full Derivatives

So for example, if

M-1
yin=¢g (X[n] +) amyln— m])
m=1

then the partial derivative of y[n+ k] w.r.t. y[n] is

dy[n+ k . =
ya[y[n]]zakg <x[n+k]+ Zamy[n—i—k—m])

m=1

where g(x) = % is the derivative of the nonlinearity. The total

derivative of y[n+ k] w.r.t. y[n] is

dyln+ K] _ Oyln+ K] S dy[n + k] dy[n + j]
j=1

dy[n] — y[n] dy[n+j] dyln]

BPTT
0000®00

Synchronous Backprop vs. BPTT

The basic idea of back-prop-through-time is divide-and-conquer.
© Synchronous Backprop: First, calculate the partial

derivative of E w.r.t. the excitation e[n] at time n, assuming
that all other time steps are held constant.

0E
e[n] = el

@ Back-prop through time: Second, iterate backward through
time to calculate the total derivative
dE

o[n] = m

BPTT
00000e0

Synchronous Backprop in an RNN

Suppose we have a recurrent neural net, defined by

then

where g(x)

M—1
e[n] = x[n] + Z amy[n— m]

m=1
ylr] = & (eln])
E= 23" (ol — tln)y
Al = oy = Ol =t £ (el

% is the derivative of the nonlinearity.

Back-Prop Through Time (BPTT)

Suppose we have a recurrent neural net, defined by
M—1

e[n] = x[n] + Z amy[n — m]
m=1

yln] = g (elr)
E= 2> (o]~ e[l

n

then
dE
d[n] = m
_O0E K~ dE de[n+ m]
~ Oe[n] + mz_:l de[n+ m] Oe[n]

M—-1
=e[n]+ > d[n+ mlg (e[n+ m]) am

m=1

Vanishing Gradient

Outline

© Vanishing/Exploding Gradient

Vanishing Gradient
®000

Vanishing /Exploding Gradient

@ The “vanishing gradient” problem refers to the tendency of

dy(ggfrn]m] to disappear, exponentially, when m is large.

@ The “exploding gradient” problem refers to the tendency of
ldy(gg[t]m] to explode toward infinity, exponentially, when m is
arge.

o If the largest feedback coefficient is |a| > 1, then you get
exploding gradient. If not, you get vanishing gradient.

Vanishing Gradient
0®00

Example: Vanishing Gradient

Suppose that we have a very simple RNN:
y[n] = bx[n] + ay[n — 1]
Suppose that x[n] is only nonzero at time 0:
x[0] = xo, and x[n] =0V n#0

Suppose that, instead of measuring x[0] directly, we are only
allowed to measure the output of the RNN m time-steps later. In
order to encourage the neural net to learn a = 1, we might
penalize any difference between y[m] and xp, thus:

1

E==:
2

(v[m] — o)

Vanishing Gradient
ooeo

Example: Vanishing Gradient

Now, how do we perform gradient update of the weights? If

yln] = bx[n] + ay[n — 1]

%= ()

then

But the error is defined as

E= 3 Olm -)’
" dE _ dE _ , dE _
dy[0] “dy[1l] " dy[2] T

= 2" (y[m] — %)

[eJele])
Example: Vanishing Gradient

So we find out that the
gradient, w.r.t. the coefficient

b, is either exponentially small, .
: Exponential Decay
or exponentially large,

depending on whether |a| <1 o

1k e(-x5)
en-x)

or |a| > 1: o
o =0 blml —)" 1N
\\
In other words, if our : -l
application requires the neural T
net to wait m time steps before Image credit: PeterQ,
generating its output, then the Wikipedia

gradient is exponentially
smaller, and therefore training
the neural net is exponentially
harder.

Outline

@ Gated Recurrent Units

Gated Recurrent Units (GRU)

Gated recurrent units solve the vanishing gradient problem by
making the feedback coefficient, f[n], a sigmoidal function of the
inputs. When the input causes f[n] &~ 1, then the recurrent unit
remembers its own past, with no forgetting (no vanishing
gradient). When the input causes f[n] ~ 0, then the recurrent unit
immediately forgets all of the past.

y[n] = i[n]x[n] + f[n]y[n — 1]
where the input and forget gates depend on x[n] and y[n], as

i[n] = o (bix[n] + ajy[n —1]) € (0,1)
fln] = o (bmx[n] + ary[n —1]) € (0,1)

How does GRU work? Example

For example, suppose that the inputs just coincidentally have
values that cause the following gate behavior:

1 |1 n=ng
ifn} = { 0 otherwise

_J 0 n=ng
Fln] = { 1 otherwise

y[n] = i[n]x[n] + f[n]y[n — 1]

Then y[N] = y[N —1] = ... = y[no] = x[no], memorized! And

therefore
dy[N] [1 n=ng
Ox[n] | 0 otherwise

Training the Gates

ylnl = ilnlx[n] + fn]y[n —1]
i[n] = o (bix[n] + ajy[n — 1]) € (0,1)
f(n] = o (bmx[n] + ary[n —1]) € (0,1)

N

(‘9E B OE 0y|[n] 0i[n]
B Z 8y[n] di[n] Ob;

- Zé[n]x[n]al[n]

LSTM
Outline

@ Long Short-Term Memory (LSTM)

Characterizing Human Memory

INPUT GATE PERCEPTION
OUTPUT GATE ACTION

Pr {remember} = p et/ 7™ 4 (1 — pry)e t/ Tsmm

Neural Network Model: LSTM

i[n] = input gate = o(b;x[n] + aic[n — 1])
o[n] = output gate = o(box[n] + aoc[n — 1])
f[n] = forget gate = o(bsx[n] + arc[n — 1])

c[n] = memory cell

y[n] = o[nlc[n]
c[n] = fn]c[n — 1] + i[n]g (bex[n] + acc[n — 1])

Conclusion

Outline

© Conclusion

Conclusion
°

@ TDNN is a one-dimensional ConvNet, the nonlinear version of
an FIR filter. Coefficients are shared across time steps.

@ RNN is the nonlinear version of an IIR filter. Coefficients are
shared across time steps. Error is back-propagated from every
output time step to every input time step.

@ Vanishing gradient problem: the memory of an RNN decays
exponentially.
@ Solution: GRU

@ An LSTM is a GRU with one more gate, allowing it to decide
when to output information from LTM back to STM.

	Linear Time Invariant Filtering: FIR & IIR
	Nonlinear Time Invariant Filtering: CNN & RNN
	Back-Propagation Training for CNN and RNN
	Back-Prop Through Time
	Vanishing/Exploding Gradient
	Gated Recurrent Units
	Long Short-Term Memory (LSTM)
	Conclusion

