Recurrent Neural Nets

ECE 417: Multimedia Signal Processing Mark Hasegawa-Johnson

University of Illinois

November 19, 2019

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Back-Propagation Training for CNN and RNN
- 4 Back-Prop Through Time
- 5 Vanishing/Exploding Gradient
- 6 Gated Recurrent Units
- O Long Short-Term Memory (LSTM)
- 8 Conclusion

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Back-Propagation Training for CNN and RNN
- 4 Back-Prop Through Time
- 5 Vanishing/Exploding Gradient
- 6 Gated Recurrent Units
- 1 Long Short-Term Memory (LSTM)
- 8 Conclusion

Basics of DSP: Filtering

$$y[n] = \sum_{m = -\infty}^{\infty} h[m] \times [n - m]$$
$$Y(z) = H(z)X(z)$$

Finite Impulse Response (FIR)

$$y[n] = \sum_{m=0}^{N-1} h[m]x[n-m]$$

The coefficients, h[m], are chosen in order to optimally position the N-1 zeros of the transfer function, r_k , defined according to:

$$H(z) = \sum_{m=0}^{N-1} h[m]z^{-m} = h[0] \prod_{k=1}^{N-1} (1 - r_k z^{-1})$$

Infinite Impulse Response (IIR)

$$y[n] = \sum_{m=0}^{N-1} b_m x[n-m] + \sum_{m=1}^{M-1} a_m y[n-m]$$

The coefficients, b_m and a_m , are chosen in order to optimally position the N-1 zeros and M-1 poles of the transfer function, r_k and p_k , defined according to:

$$H(z) = \frac{\sum_{m=0}^{N-1} b_m z^{-m}}{1 - \sum_{m=1}^{M-1} a_m z^{-m}} = b_0 \frac{\prod_{k=1}^{N-1} (1 - r_k z^{-1})}{\prod_{k=1}^{M-1} (1 - p_k z^{-1})}$$

- Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Back-Propagation Training for CNN and RNN
- 4 Back-Prop Through Time
- 5 Vanishing/Exploding Gradient
- 6 Gated Recurrent Units
- 1 Long Short-Term Memory (LSTM)
- 8 Conclusion

Convolutional Neural Net = Nonlinear(FIR)

$$y[n] = g\left(\sum_{m=0}^{N-1} h[m]x[n-m]\right)$$

The coefficients, h[m], are chosen to minimize some kind of error. For example, suppose that the goal is to make y[n] resemble a target signal t[n]; then we might use

$$E = \frac{1}{2} \sum_{n=0}^{N} (y[n] - t[n])^{2}$$

and choose

$$h[n] \leftarrow h[n] - \eta \frac{dE}{dh[n]}$$

Recurrent Neural Net (RNN) = Nonlinear(IIR)

$$y[n] = g\left(x[n] + \sum_{m=1}^{M-1} a_m y[n-m]\right)$$

The coefficients, a_m , are chosen to minimize the error. For example, suppose that the goal is to make y[n] resemble a target signal t[n]; then we might use

$$E = \frac{1}{2} \sum_{n=0}^{N} (y[n] - t[n])^{2}$$

and choose

$$a_m \leftarrow a_m - \eta \frac{dE}{da_m}$$

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Back-Propagation Training for CNN and RNN
- 4 Back-Prop Through Time
- 5 Vanishing/Exploding Gradient
- 6 Gated Recurrent Units
- 1 Long Short-Term Memory (LSTM)
- Conclusion

Review: Excitation and Activation

• The **activation** of a hidden node is the output of the nonlinearity (for this reason, the nonlinearity is sometimes called the **activation function**). For example, in a fully-connected network with outputs z_I , weights \vec{v} , bias v_0 , nonlinearity g(), and hidden node activations \vec{y} , the activation of the $I^{\rm th}$ output node is

$$z_{l}=g\left(v_{l0}+\sum_{k=1}^{p}v_{lk}y_{k}\right)$$

• The **excitation** of a hidden node is the input of the nonlinearity. For example, the excitation of the node above is

$$e_l = v_{l0} + \sum_{k=1}^p v_{lk} y_k$$

Backprop = Derivative w.r.t. Excitation

 The excitation of a hidden node is the input of the nonlinearity. For example, the excitation of the node above is

$$e_l = v_{l0} + \sum_{k=1}^p v_{lk} y_k$$

The gradient of the error w.r.t. the weight is

$$\frac{dE}{dv_{lk}} = \epsilon_l y_k$$

where ϵ_I is the derivative of the error w.r.t. the $I^{\rm th}$ excitation:

$$\epsilon_I = \frac{dE}{de_I}$$

Backprop for Fully-Connected Network

Suppose we have a fully-connected network, with inputs \vec{x} , weight matrices U and V, nonlinearities g() and h(), and output z:

$$e_k = u_{k0} + \sum_j u_{kj} x_j$$

$$y_k = g(e_k)$$

$$e_l = v_{l0} + \sum_k v_{lk} y_k$$

$$z_l = h(e_l)$$

Then the back-prop gradients are the derivatives of E with respect to the **excitations** at each node:

$$\epsilon_{I} = \frac{dE}{de_{I}}$$
$$\delta_{k} = \frac{dE}{de_{k}}$$

Back-Prop in a CNN

Suppose we have a convolutional neural net, defined by

$$e[n] = \sum_{m=0}^{N-1} h[m] \times [n-m]$$
$$y[n] = g(e[n])$$

then

$$\frac{dE}{dh[m]} = \sum_{n} \delta[n] x[n-m]$$

where $\delta[n]$ is the back-prop gradient, defined by

$$\delta[n] = \frac{dE}{de[n]}$$

Back-Prop in an RNN

Suppose we have a recurrent neural net, defined by

$$e[n] = x[n] + \sum_{m=1}^{M-1} a_m y[n-m]$$

 $y[n] = g(e[n])$

then

$$\frac{dE}{da_m} = \sum_{n} \delta[n] y[n-m]$$

where y[n-m] is calculated by forward-propagation, and then $\delta[n]$ is calculated by back-propagation as

$$\delta[n] = \frac{dE}{de[n]}$$

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Back-Propagation Training for CNN and RNN
- 4 Back-Prop Through Time
- 5 Vanishing/Exploding Gradient
- 6 Gated Recurrent Units
- 1 Long Short-Term Memory (LSTM)
- 8 Conclusion

For example, suppose we want y[n] to be as close as possible to some target signal t[n]:

$$E = \frac{1}{2} \sum_{n} (y[n] - t[n])^{2}$$

Notice that E depends on y[n] in many different ways:

$$\frac{dE}{dy[n]} = \frac{\partial E}{\partial y[n]} + \frac{dE}{dy[n+1]} \frac{\partial y[n+1]}{\partial y[n]} + \frac{dE}{dy[n+2]} \frac{\partial y[n+2]}{\partial y[n]} + \dots$$

In general,

$$\frac{dE}{dy[n]} = \frac{\partial E}{\partial y[n]} + \sum_{m=1}^{\infty} \frac{dE}{dy[n+m]} \frac{\partial y[n+m]}{\partial y[n]}$$

where

- $\frac{dE}{dy[n]}$ is the total derivative, and includes all of the different ways in which E depends on y[n].
- $\frac{\partial y[n+m]}{\partial y[n]}$ is the partial derivative, i.e., the change in y[n+m] per unit change in y[n] if all of the other variables (all other values of y[n+k]) are held constant.

So for example, if

$$E = \frac{1}{2} \sum_{n} (y[n] - t[n])^{2}$$

then the partial derivative of E w.r.t. y[n] is

$$\frac{\partial E}{\partial y[n]} = y[n] - t[n]$$

and the total derivative of E w.r.t. y[n] is

$$\frac{dE}{dy[n]} = (y[n] - t[n]) + \sum_{m=1}^{\infty} \frac{dE}{dy[n+m]} \frac{\partial y[n+m]}{\partial y[n]}$$

So for example, if

$$y[n] = g\left(x[n] + \sum_{m=1}^{M-1} a_m y[n-m]\right)$$

then the partial derivative of y[n+k] w.r.t. y[n] is

$$\frac{\partial y[n+k]}{\partial y[n]} = a_k \dot{g}\left(x[n+k] + \sum_{m=1}^{M-1} a_m y[n+k-m]\right)$$

where $\dot{g}(x) = \frac{dg}{dx}$ is the derivative of the nonlinearity. The total derivative of y[n+k] w.r.t. y[n] is

$$\frac{dy[n+k]}{dy[n]} = \frac{\partial y[n+k]}{\partial y[n]} + \sum_{i=1}^{k-1} \frac{dy[n+k]}{dy[n+j]} \frac{\partial y[n+j]}{\partial y[n]}$$

Synchronous Backprop vs. BPTT

The basic idea of back-prop-through-time is divide-and-conquer.

Synchronous Backprop: First, calculate the **partial derivative** of E w.r.t. the excitation e[n] at time n, assuming that all other time steps are held constant.

$$\epsilon[n] = \frac{\partial E}{\partial e[n]}$$

② Back-prop through time: Second, iterate backward through time to calculate the total derivative

$$\delta[n] = \frac{dE}{de[n]}$$

Synchronous Backprop in an RNN

Suppose we have a recurrent neural net, defined by

$$e[n] = x[n] + \sum_{m=1}^{M-1} a_m y[n-m]$$
$$y[n] = g(e[n])$$
$$E = \frac{1}{2} \sum_{n=1}^{M-1} (y[n] - t[n])^2$$

then

$$\epsilon[n] = \frac{\partial E}{\partial e[n]} = (y[n] - t[n]) \dot{g}(e[n])$$

where $\dot{g}(x) = \frac{dg}{dx}$ is the derivative of the nonlinearity.

Back-Prop Through Time (BPTT)

Suppose we have a recurrent neural net, defined by

$$e[n] = x[n] + \sum_{m=1}^{M-1} a_m y[n-m]$$
$$y[n] = g(e[n])$$
$$E = \frac{1}{2} \sum_{n=1}^{M-1} (y[n] - t[n])^2$$

then

$$\delta[n] = \frac{dE}{de[n]}$$

$$= \frac{\partial E}{\partial e[n]} + \sum_{m=1}^{\infty} \frac{dE}{de[n+m]} \frac{\partial e[n+m]}{\partial e[n]}$$

$$= \epsilon[n] + \sum_{m=1}^{M-1} \delta[n+m] \dot{g} (e[n+m]) a_m$$

- Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Back-Propagation Training for CNN and RNN
- 4 Back-Prop Through Time
- 5 Vanishing/Exploding Gradient
- 6 Gated Recurrent Units
- 1 Long Short-Term Memory (LSTM)
- Conclusion

Vanishing/Exploding Gradient

- The "vanishing gradient" problem refers to the tendency of $\frac{dy[n+m]}{de[n]}$ to disappear, exponentially, when m is large.
- The "exploding gradient" problem refers to the tendency of $\frac{dy[n+m]}{de[n]}$ to explode toward infinity, exponentially, when m is large.
- If the largest feedback coefficient is |a| > 1, then you get exploding gradient. If not, you get vanishing gradient.

Example: Vanishing Gradient

Suppose that we have a very simple RNN:

$$y[n] = bx[n] + ay[n-1]$$

Suppose that x[n] is only nonzero at time 0:

$$x[0] = x_0$$
, and $x[n] = 0 \forall n \neq 0$

Suppose that, instead of measuring x[0] directly, we are only allowed to measure the output of the RNN m time-steps later. In order to encourage the neural net to learn $a \approx 1$, we might penalize any difference between y[m] and x_0 , thus:

$$E = \frac{1}{2} (y[m] - x_0)^2$$

Example: Vanishing Gradient

Now, how do we perform gradient update of the weights? If

$$y[n] = bx[n] + ay[n-1]$$

then

$$\frac{dE}{db} = \sum_{n} \left(\frac{dE}{dy[n]}\right) \times [n]$$
$$= \left(\frac{dE}{dy[0]}\right) \times [0]$$

But the error is defined as

$$E = \frac{1}{2} (y[m] - x_0)^2$$

so

$$\frac{dE}{dy[0]} = a \frac{dE}{dy[1]} = a^2 \frac{dE}{dy[2]} = \dots$$
$$= a^m (y[m] - x_0)$$

Example: Vanishing Gradient

So we find out that the gradient, w.r.t. the coefficient b, is either exponentially small, or exponentially large, depending on whether |a|<1 or |a|>1:

$$\frac{dE}{db} = x_0 \left(y[m] - x_0 \right) a^m$$

In other words, if our application requires the neural net to wait *m* time steps before generating its output, then the gradient is exponentially smaller, and therefore training the neural net is exponentially harder.

- Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Back-Propagation Training for CNN and RNN
- Back-Prop Through Time
- 5 Vanishing/Exploding Gradient
- 6 Gated Recurrent Units
- O Long Short-Term Memory (LSTM)
- Conclusion

Gated Recurrent Units (GRU)

Gated recurrent units solve the vanishing gradient problem by making the feedback coefficient, f[n], a sigmoidal function of the inputs. When the input causes $f[n] \approx 1$, then the recurrent unit remembers its own past, with no forgetting (no vanishing gradient). When the input causes $f[n] \approx 0$, then the recurrent unit immediately forgets all of the past.

$$y[n] = i[n]x[n] + f[n]y[n-1]$$

where the input and forget gates depend on x[n] and y[n], as

$$i[n] = \sigma (b_i x[n] + a_i y[n-1]) \in (0,1)$$

$$f[n] = \sigma (b_m x[n] + a_f y[n-1]) \in (0,1)$$

How does GRU work? Example

For example, suppose that the inputs just coincidentally have values that cause the following gate behavior:

$$i[n] = \begin{cases} 1 & n = n_0 \\ 0 & \text{otherwise} \end{cases}$$

$$f[n] = \begin{cases} 0 & n = n_0 \\ 1 & \text{otherwise} \end{cases}$$

$$y[n] = i[n]x[n] + f[n]y[n-1]$$

Then
$$y[N] = y[N-1] = \ldots = y[n_0] = x[n_0]$$
, memorized! And therefore
$$\frac{\partial y[N]}{\partial x[n]} = \begin{cases} 1 & n = n_0 \\ 0 & \text{otherwise} \end{cases}$$

Training the Gates

$$y[n] = i[n]x[n] + f[n]y[n-1]$$

$$i[n] = \sigma (b_i \times [n] + a_i y[n-1]) \in (0,1)$$

$$f[n] = \sigma (b_m \times [n] + a_f y[n-1]) \in (0,1)$$

$$\frac{\partial E}{\partial b_i} = \sum_{n=0}^{N} \frac{\partial E}{\partial y[n]} \frac{\partial y[n]}{\partial i[n]} \frac{\partial i[n]}{\partial b_i}$$
$$= \sum_{n=0}^{N} \delta[n] x[n] \frac{\partial i[n]}{\partial b_i}$$

- 1 Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Back-Propagation Training for CNN and RNN
- 4 Back-Prop Through Time
- 5 Vanishing/Exploding Gradient
- 6 Gated Recurrent Units
- O Long Short-Term Memory (LSTM)
- 8 Conclusion

Characterizing Human Memory

$$Pr \{remember\} = p_{LTM}e^{-t/T_{LTM}} + (1 - p_{LTM})e^{-t/T_{STM}}$$

Neural Network Model: LSTM

$$i[n] = ext{input gate} = \sigma(b_i x[n] + a_i c[n-1])$$
 $o[n] = ext{output gate} = \sigma(b_o x[n] + a_o c[n-1])$
 $f[n] = ext{forget gate} = \sigma(b_f x[n] + a_f c[n-1])$
 $c[n] = ext{memory cell}$

$$y[n] = o[n]c[n]$$

 $c[n] = f[n]c[n-1] + i[n]g(b_cx[n] + a_cc[n-1])$

- Linear Time Invariant Filtering: FIR & IIR
- 2 Nonlinear Time Invariant Filtering: CNN & RNN
- 3 Back-Propagation Training for CNN and RNN
- 4 Back-Prop Through Time
- 5 Vanishing/Exploding Gradient
- 6 Gated Recurrent Units
- O Long Short-Term Memory (LSTM)
- 8 Conclusion

- TDNN is a one-dimensional ConvNet, the nonlinear version of an FIR filter. Coefficients are shared across time steps.
- RNN is the nonlinear version of an IIR filter. Coefficients are shared across time steps. Error is back-propagated from every output time step to every input time step.
- Vanishing gradient problem: the memory of an RNN decays exponentially.
- Solution: GRU
- An LSTM is a GRU with one more gate, allowing it to decide when to output information from LTM back to STM.