
FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Recurrent Neural Nets

ECE 417: Multimedia Signal Processing
Mark Hasegawa-Johnson

University of Illinois

November 19, 2019

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

1 Linear Time Invariant Filtering: FIR & IIR

2 Nonlinear Time Invariant Filtering: CNN & RNN

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Vanishing/Exploding Gradient

6 Gated Recurrent Units

7 Long Short-Term Memory (LSTM)

8 Conclusion

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Outline

1 Linear Time Invariant Filtering: FIR & IIR

2 Nonlinear Time Invariant Filtering: CNN & RNN

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Vanishing/Exploding Gradient

6 Gated Recurrent Units

7 Long Short-Term Memory (LSTM)

8 Conclusion

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Basics of DSP: Filtering

y [n] =
∞∑

m=−∞
h[m]x [n −m]

Y (z) = H(z)X (z)

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Finite Impulse Response (FIR)

y [n] =
N−1∑
m=0

h[m]x [n −m]

The coefficients, h[m], are chosen in order to optimally position
the N − 1 zeros of the transfer function, rk , defined according to:

H(z) =
N−1∑
m=0

h[m]z−m = h[0]
N−1∏
k=1

(
1− rkz

−1)

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Infinite Impulse Response (IIR)

y [n] =
N−1∑
m=0

bmx [n −m] +
M−1∑
m=1

amy [n −m]

The coefficients, bm and am, are chosen in order to optimally
position the N − 1 zeros and M − 1 poles of the transfer function,
rk and pk , defined according to:

H(z) =

∑N−1
m=0 bmz

−m

1−
∑M−1

m=1 amz
−m

= b0

∏N−1
k=1

(
1− rkz

−1)∏M−1
k=1 (1− pkz−1)

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Outline

1 Linear Time Invariant Filtering: FIR & IIR

2 Nonlinear Time Invariant Filtering: CNN & RNN

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Vanishing/Exploding Gradient

6 Gated Recurrent Units

7 Long Short-Term Memory (LSTM)

8 Conclusion

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Convolutional Neural Net = Nonlinear(FIR)

y [n] = g

(
N−1∑
m=0

h[m]x [n −m]

)
The coefficients, h[m], are chosen to minimize some kind of error.
For example, suppose that the goal is to make y [n] resemble a
target signal t[n]; then we might use

E =
1

2

N∑
n=0

(y [n]− t[n])2

and choose

h[n]← h[n]− η dE

dh[n]

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Recurrent Neural Net (RNN) = Nonlinear(IIR)

y [n] = g

(
x [n] +

M−1∑
m=1

amy [n −m]

)
The coefficients, am, are chosen to minimize the error. For
example, suppose that the goal is to make y [n] resemble a target
signal t[n]; then we might use

E =
1

2

N∑
n=0

(y [n]− t[n])2

and choose

am ← am − η
dE

dam

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Outline

1 Linear Time Invariant Filtering: FIR & IIR

2 Nonlinear Time Invariant Filtering: CNN & RNN

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Vanishing/Exploding Gradient

6 Gated Recurrent Units

7 Long Short-Term Memory (LSTM)

8 Conclusion

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Review: Excitation and Activation

The activation of a hidden node is the output of the
nonlinearity (for this reason, the nonlinearity is sometimes
called the activation function). For example, in a
fully-connected network with outputs zl , weights ~v , bias v0,
nonlinearity g(), and hidden node activations ~y , the activation
of the l th output node is

zl = g

(
vl0 +

p∑
k=1

vlkyk

)

The excitation of a hidden node is the input of the
nonlinearity. For example, the excitation of the node above is

el = vl0 +

p∑
k=1

vlkyk

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Backprop = Derivative w.r.t. Excitation

The excitation of a hidden node is the input of the
nonlinearity. For example, the excitation of the node above is

el = vl0 +

p∑
k=1

vlkyk

The gradient of the error w.r.t. the weight is

dE

dvlk
= εlyk

where εl is the derivative of the error w.r.t. the l th excitation:

εl =
dE

del

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Backprop for Fully-Connected Network

Suppose we have a fully-connected network, with inputs ~x , weight
matrices U and V , nonlinearities g() and h(), and output z :

ek = uk0 +
∑
j

ukjxj

yk = g (ek)

el = vl0 +
∑
k

vlkyk

zl = h (el)

Then the back-prop gradients are the derivatives of E with respect
to the excitations at each node:

εl =
dE

del

δk =
dE

dek

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Back-Prop in a CNN

Suppose we have a convolutional neural net, defined by

e[n] =
N−1∑
m=0

h[m]x [n −m]

y [n] = g (e[n])

then
dE

dh[m]
=
∑
n

δ[n]x [n −m]

where δ[n] is the back-prop gradient, defined by

δ[n] =
dE

de[n]

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Back-Prop in an RNN

Suppose we have a recurrent neural net, defined by

e[n] = x [n] +
M−1∑
m=1

amy [n −m]

y [n] = g (e[n])

then
dE

dam
=
∑
n

δ[n]y [n −m]

where y [n−m] is calculated by forward-propagation, and then δ[n]
is calculated by back-propagation as

δ[n] =
dE

de[n]

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Outline

1 Linear Time Invariant Filtering: FIR & IIR

2 Nonlinear Time Invariant Filtering: CNN & RNN

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Vanishing/Exploding Gradient

6 Gated Recurrent Units

7 Long Short-Term Memory (LSTM)

8 Conclusion

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Partial vs. Full Derivatives

For example, suppose we want y [n] to be as close as possible to
some target signal t[n]:

E =
1

2

∑
n

(y [n]− t[n])2

Notice that E depends on y [n] in many different ways:

dE

dy [n]
=

∂E

∂y [n]
+

dE

dy [n + 1]

∂y [n + 1]

∂y [n]
+

dE

dy [n + 2]

∂y [n + 2]

∂y [n]
+ . . .

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Partial vs. Full Derivatives

In general,

dE

dy [n]
=

∂E

∂y [n]
+
∞∑

m=1

dE

dy [n + m]

∂y [n + m]

∂y [n]

where
dE

dy [n] is the total derivative, and includes all of the different

ways in which E depends on y [n].
∂y [n+m]
∂y [n] is the partial derivative, i.e., the change in y [n + m]

per unit change in y [n] if all of the other variables (all other
values of y [n + k]) are held constant.

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Partial vs. Full Derivatives

So for example, if

E =
1

2

∑
n

(y [n]− t[n])2

then the partial derivative of E w.r.t. y [n] is

∂E

∂y [n]
= y [n]− t[n]

and the total derivative of E w.r.t. y [n] is

dE

dy [n]
= (y [n]− t[n]) +

∞∑
m=1

dE

dy [n + m]

∂y [n + m]

∂y [n]

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Partial vs. Full Derivatives

So for example, if

y [n] = g

(
x [n] +

M−1∑
m=1

amy [n −m]

)

then the partial derivative of y [n + k] w.r.t. y [n] is

∂y [n + k]

∂y [n]
= ak ġ

(
x [n + k] +

M−1∑
m=1

amy [n + k −m]

)

where ġ(x) = dg
dx is the derivative of the nonlinearity. The total

derivative of y [n + k] w.r.t. y [n] is

dy [n + k]

dy [n]
=
∂y [n + k]

∂y [n]
+

k−1∑
j=1

dy [n + k]

dy [n + j]

∂y [n + j]

∂y [n]

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Synchronous Backprop vs. BPTT

The basic idea of back-prop-through-time is divide-and-conquer.

1 Synchronous Backprop: First, calculate the partial
derivative of E w.r.t. the excitation e[n] at time n, assuming
that all other time steps are held constant.

ε[n] =
∂E

∂e[n]

2 Back-prop through time: Second, iterate backward through
time to calculate the total derivative

δ[n] =
dE

de[n]

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Synchronous Backprop in an RNN

Suppose we have a recurrent neural net, defined by

e[n] = x [n] +
M−1∑
m=1

amy [n −m]

y [n] = g (e[n])

E =
1

2

∑
n

(y [n]− t[n])2

then

ε[n] =
∂E

∂e[n]
= (y [n]− t[n]) ġ (e[n])

where ġ(x) = dg
dx is the derivative of the nonlinearity.

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Back-Prop Through Time (BPTT)

Suppose we have a recurrent neural net, defined by

e[n] = x [n] +
M−1∑
m=1

amy [n −m]

y [n] = g (e[n])

E =
1

2

∑
n

(y [n]− t[n])2

then

δ[n] =
dE

de[n]

=
∂E

∂e[n]
+
∞∑

m=1

dE

de[n + m]

∂e[n + m]

∂e[n]

= ε[n] +
M−1∑
m=1

δ[n + m]ġ (e[n + m]) am

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Outline

1 Linear Time Invariant Filtering: FIR & IIR

2 Nonlinear Time Invariant Filtering: CNN & RNN

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Vanishing/Exploding Gradient

6 Gated Recurrent Units

7 Long Short-Term Memory (LSTM)

8 Conclusion

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Vanishing/Exploding Gradient

The “vanishing gradient” problem refers to the tendency of
dy [n+m]
de[n] to disappear, exponentially, when m is large.

The “exploding gradient” problem refers to the tendency of
dy [n+m]
de[n] to explode toward infinity, exponentially, when m is

large.

If the largest feedback coefficient is |a| > 1, then you get
exploding gradient. If not, you get vanishing gradient.

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Example: Vanishing Gradient

Suppose that we have a very simple RNN:

y [n] = bx [n] + ay [n − 1]

Suppose that x [n] is only nonzero at time 0:

x [0] = x0, and x [n] = 0 ∀ n 6= 0

Suppose that, instead of measuring x [0] directly, we are only
allowed to measure the output of the RNN m time-steps later. In
order to encourage the neural net to learn a ≈ 1, we might
penalize any difference between y [m] and x0, thus:

E =
1

2
(y [m]− x0)2

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Example: Vanishing Gradient

Now, how do we perform gradient update of the weights? If

y [n] = bx [n] + ay [n − 1]

then

dE

db
=
∑
n

(
dE

dy [n]

)
x [n]

=

(
dE

dy [0]

)
x [0]

But the error is defined as

E =
1

2
(y [m]− x0)2

so

dE

dy [0]
= a

dE

dy [1]
= a2

dE

dy [2]
= . . .

= am (y [m]− x0)

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Example: Vanishing Gradient

So we find out that the
gradient, w.r.t. the coefficient
b, is either exponentially small,
or exponentially large,
depending on whether |a| < 1
or |a| > 1:

dE

db
= x0 (y [m]− x0) am

In other words, if our
application requires the neural
net to wait m time steps before
generating its output, then the
gradient is exponentially
smaller, and therefore training
the neural net is exponentially
harder.

Exponential Decay

Image credit: PeterQ,
Wikipedia

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Outline

1 Linear Time Invariant Filtering: FIR & IIR

2 Nonlinear Time Invariant Filtering: CNN & RNN

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Vanishing/Exploding Gradient

6 Gated Recurrent Units

7 Long Short-Term Memory (LSTM)

8 Conclusion

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Gated Recurrent Units (GRU)

Gated recurrent units solve the vanishing gradient problem by
making the feedback coefficient, f [n], a sigmoidal function of the
inputs. When the input causes f [n] ≈ 1, then the recurrent unit
remembers its own past, with no forgetting (no vanishing
gradient). When the input causes f [n] ≈ 0, then the recurrent unit
immediately forgets all of the past.

y [n] = i [n]x [n] + f [n]y [n − 1]

where the input and forget gates depend on x [n] and y [n], as

i [n] = σ (bix [n] + aiy [n − 1]) ∈ (0, 1)

f [n] = σ (bmx [n] + af y [n − 1]) ∈ (0, 1)

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

How does GRU work? Example

For example, suppose that the inputs just coincidentally have
values that cause the following gate behavior:

i [n] =

{
1 n = n0
0 otherwise

f [n] =

{
0 n = n0
1 otherwise

y [n] = i [n]x [n] + f [n]y [n − 1]

Then y [N] = y [N − 1] = . . . = y [n0] = x [n0], memorized! And
therefore

∂y [N]

∂x [n]
=

{
1 n = n0
0 otherwise

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Training the Gates

y [n] = i [n]x [n] + f [n]y [n − 1]

i [n] = σ (bix [n] + aiy [n − 1]) ∈ (0, 1)

f [n] = σ (bmx [n] + af y [n − 1]) ∈ (0, 1)

∂E

∂bi
=

N∑
n=0

∂E

∂y [n]

∂y [n]

∂i [n]

∂i [n]

∂bi

=
N∑

n=0

δ[n]x [n]
∂i [n]

∂bi

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Outline

1 Linear Time Invariant Filtering: FIR & IIR

2 Nonlinear Time Invariant Filtering: CNN & RNN

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Vanishing/Exploding Gradient

6 Gated Recurrent Units

7 Long Short-Term Memory (LSTM)

8 Conclusion

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Characterizing Human Memory

LONG
TERM

SHORT
TERM

INPUT GATE

OUTPUT GATE

PERCEPTION

ACTION

Pr {remember} = pLTMe−t/TLTM + (1− pLTM)e−t/TSTM

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Neural Network Model: LSTM

i [n] = input gate = σ(bix [n] + aic[n − 1])

o[n] = output gate = σ(box [n] + aoc[n − 1])

f [n] = forget gate = σ(bf x [n] + af c[n − 1])

c[n] = memory cell

y [n] = o[n]c[n]

c[n] = f [n]c[n − 1] + i [n]g (bcx [n] + acc[n − 1])

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

Outline

1 Linear Time Invariant Filtering: FIR & IIR

2 Nonlinear Time Invariant Filtering: CNN & RNN

3 Back-Propagation Training for CNN and RNN

4 Back-Prop Through Time

5 Vanishing/Exploding Gradient

6 Gated Recurrent Units

7 Long Short-Term Memory (LSTM)

8 Conclusion

FIR/IIR CNN/RNN Back-Prop BPTT Vanishing Gradient GRU LSTM Conclusion

TDNN is a one-dimensional ConvNet, the nonlinear version of
an FIR filter. Coefficients are shared across time steps.

RNN is the nonlinear version of an IIR filter. Coefficients are
shared across time steps. Error is back-propagated from every
output time step to every input time step.

Vanishing gradient problem: the memory of an RNN decays
exponentially.

Solution: GRU

An LSTM is a GRU with one more gate, allowing it to decide
when to output information from LTM back to STM.

	Linear Time Invariant Filtering: FIR & IIR
	Nonlinear Time Invariant Filtering: CNN & RNN
	Back-Propagation Training for CNN and RNN
	Back-Prop Through Time
	Vanishing/Exploding Gradient
	Gated Recurrent Units
	Long Short-Term Memory (LSTM)
	Conclusion

