
Annealing Mini-Batch Training Data Augmentation Conclusions

ECE 417 Fall 2018 Lecture 19: Mini-Batch
Training and Data Augmentation

Mark Hasegawa-Johnson

University of Illinois

October 25, 2018



Annealing Mini-Batch Training Data Augmentation Conclusions

Outline

1 Simulated Annealing

2 Mini-Batch Training

3 Data Augmentation

4 Conclusions



Annealing Mini-Batch Training Data Augmentation Conclusions

Simulated Annealing: How can we find the globally
optimum U ,V ?

Gradient descent finds a local optimum. The Û, V̂ you end up
with depends on the U,V you started with.

How can you find the global optimum of a non-convex error
function?

The answer: Add randomness to the search, in such a way
that. . .

P(reach global optimum)
t→∞−→ 1



Annealing Mini-Batch Training Data Augmentation Conclusions

Take a random step. If it goes downhill, do it.



Annealing Mini-Batch Training Data Augmentation Conclusions

Take a random step. If it goes downhill, do it.

If it goes uphill, SOMETIMES do it.



Annealing Mini-Batch Training Data Augmentation Conclusions

Take a random step. If it goes downhill, do it.
If it goes uphill, SOMETIMES do it.
Uphill steps become less probable as t →∞



Annealing Mini-Batch Training Data Augmentation Conclusions

Simulated Annealing: Algorithm

FOR t = 1 TO ∞, DO

1 Set Û = U + RANDOM

2 If your random step caused the error to decrease
(En(Û) < En(U)), then set U = Û
(prefer to go downhill)

3 Else set U = Û with probability P
(. . . but sometimes go uphill!)

1 P = exp(−(En(Û)− En(U))/Temperature)
(Small steps uphill are more probable than big steps
uphill.)

2 Temperature = Tmax/ log(t + 1)
(Uphill steps become less probable as t →∞.)

4 Whenever you reach a local optimum (U is better than both
the preceding and following time steps), check to see if it’s
better than all preceding local optima; if so, remember it.



Annealing Mini-Batch Training Data Augmentation Conclusions

Convergence Properties of Simulated Annealing

(Hajek, 1985) proved that, if we start out in a “valley” that is
separated from the global optimum by a “ridge” of height Tmax ,
and if the temperature at time t is T (t), then simulated annealing
converges in probability to the global optimum if

∞∑
t=1

exp (−Tmax/T (t)) = +∞

For example, this condition is satisfied if

T (t) = Tmax/ log(t + 1)



Annealing Mini-Batch Training Data Augmentation Conclusions

If Simulated Annealing is Guaranteed to Work, Why
Doesn’t Anybody Use It?

Answer: it takes much, much, much longer than gradient descent.
Usually thousands of times longer.



Annealing Mini-Batch Training Data Augmentation Conclusions

Outline

1 Simulated Annealing

2 Mini-Batch Training

3 Data Augmentation

4 Conclusions



Annealing Mini-Batch Training Data Augmentation Conclusions

The Three Types of Gradient Descent

Remember that gradient descent means:

ukj ← ukj − η
∂ε

∂ukj

1 Batch Training: ∂E
∂ujk

is computed over the entire training

database.

2 Stochastic Gradient Descent (SGD): ∂E
∂ujk

is computed for just

one randomly chosen training token.

3 Mini-Batch Training: ∂E
∂ujk

is computed for a small set of

randomly chosen training tokens (e.g., 8, 32, 128).



Annealing Mini-Batch Training Data Augmentation Conclusions

Gradient Descent Review

Suppose we have an error of the form

E =
1

n

n∑
i=1

Ei

where Ei might be cross-entropy:

Ei = − log z`∗i , `∗ = the value of ` s.t. ζ`∗ = 1

or squared error:

Ei =
1

2

∑
`

(z`i − ζ`i )2

or anything else.



Annealing Mini-Batch Training Data Augmentation Conclusions

Gradient Descent Review

Then the error gradient is

∂E

∂ukj
=

1

n

n∑
i=1

∂Ei

∂ukj
, ∇UE =

1

n

n∑
i=1

∇UEi

where, for any error that can be decomposed using
back-propagation:

∂Ei

∂v`k
=
∂Ei

∂b`i

∂b`i
∂v`k

= ε`iyki , ∇VEi = ~εi~y
T
i

∂Ei

∂ukj
=
∂Ei

∂aki

∂aki
∂ukj

= δkixji , ∇UEi = ~δi~x
T
i



Annealing Mini-Batch Training Data Augmentation Conclusions

Gradient Descent Review

For both cross-entropy and sum-squared error, we actually can get
the same equations for back-propagation:

ε`i =
∂Ei

∂b`i
= z`i − ζ`i ~εi = ∇~bi

Ei = ~zi − ~ζi

δki =
∂Ei

∂aki
=

∑
`

ε`iv`k f
′(aki ) ~δi = ∇~aiEi = f ′(~ai )� V T~εi

where � means scalar array multiplication.



Annealing Mini-Batch Training Data Augmentation Conclusions

The Three Types of Gradient Descent

Now we have the context we need, in order to define the three
types of gradient descent.

1 Batch Training: D =
{

(~x1, ~ζ1), . . . , (~xn, ~ζn)
}

is the set of all

training tokens, and

ukj ← ukj −
η

n

n∑
i=1

∂Ei

∂ukj

2 Stochastic Gradient Descent: (~xi , ~ζi ) is a training token
chosen at random (with or without replacement), and

ukj ← ukj − η
∂Ei

∂ukj



Annealing Mini-Batch Training Data Augmentation Conclusions

The Three Types of Gradient Descent

Now we have the context we need, in order to define the three
types of gradient descent.

3 Mini-Batch Training: D(t) =
{

(~x
(t)
1 , ~ζ

(t)
1 ), . . . , (~x

(t)
m , ~ζ

(t)
m )

}
is a

set of m < n training tokens chosen randomly (with or
without replacement), for the tth iteration of training, and

E
(t)
i is the error computed for minibatch token (~x

(t)
i , ~ζ

(t)
i ), and

ukj ← ukj −
η

m

m∑
i=1

∂E
(t)
i

∂ukj



Annealing Mini-Batch Training Data Augmentation Conclusions

When should you use batch training?

Why should you use batch training? Pro: in some sense,
minimizing error on the whole training corpus is what training
is trying to achieve, so you might as well go ahead and
explicitly minimize it.

Why should you not use batch training?
1 Over-training.
2 Bad local optima.
3 Computational complexity.



Annealing Mini-Batch Training Data Augmentation Conclusions

Why should you not use batch training?

1 Over-training: Minimizing training corpus error might not
minimize test corpus error (e.g., because training corpus is
too small).

2 Bad local optima:

gradient descent converges to a ujk such that small changes to
ujk increase training corpus error.
But there might be some other value of ujk , very far away, that
has much better training corpus error. For example, simulated
annealing would find this by sometimes taking steps at random.

3 Computational complexity. Your GPU might not be big
enough to load the entire training corpus.



Annealing Mini-Batch Training Data Augmentation Conclusions

Why should you use SGD?

Reasons to use SGD:
1 Over-training: SGD doesn’t really help, but you can easily

control this using early stopping (meaning, stop training
before you reach full convergence).

2 Bad local optima: SGD adds randomness that is kind of like
simulated annealing. In fact, nobody has ever proven that
SGD works as well as simulated annealing. But SGD seems to
help a lot in practice.

3 Computational complexity. Complexity of SGD is much less
than batch training.

Reasons to not use SGD:
1 Too much random variability.
2 Computational complexity: GPU can hold 8 or 32 training

tokens. Why waste cycles by loading just 1 training token?



Annealing Mini-Batch Training Data Augmentation Conclusions

Why should you use mini-batch?

1 Over-training: Control it with early stopping.

2 Bad local optima: If your batch size contains m� n tokens,
then (there is no proof, but in practice) you seem to get all
the stochastic-search benefits of SGD, without the. . .

3 Variability: you can tweak the size of the minibatch. Larger
m reduces variability, but makes it harder to “anneal;” smaller
m increases variability, therefore increases annealing.

4 Computational complexity. Tweak m to be exactly the
number of tokens that fit onto your GPU.



Annealing Mini-Batch Training Data Augmentation Conclusions

Outline

1 Simulated Annealing

2 Mini-Batch Training

3 Data Augmentation

4 Conclusions



Annealing Mini-Batch Training Data Augmentation Conclusions

Neural Nets are Data-Hungry

Neural nets need lots and lots of training data:

Training corpus error is bounded as c1/q, for some constant
c1 that you don’t know until after you’ve done the training,
where q is the number of hidden nodes.

Test corpus error is always worse than training corpus error,
by an additive percentage of c2q/n, where c2 is some other
constant that you don’t know until you’ve done the
experiment.

Therefore the total test error is Etest < c1
1
q + c2

q
n .

This can be minimized by setting q =
√
n, in which case you

always get

Etest < (c1 + c2)
1√
n

So, no matter how big your training corpus is, you can always
get better performance by making it even bigger.



Annealing Mini-Batch Training Data Augmentation Conclusions

Training corpora are never as big as you wish they were.



Annealing Mini-Batch Training Data Augmentation Conclusions

Data Augmentation

For every example in your training corpus, ~xi with label ~ζi ,. . .

how many “fake examples” can you create that you’re sure
will have exactly the same label?



Annealing Mini-Batch Training Data Augmentation Conclusions

Examples of Data Augmentation

Add noise to the image: random numbers between (−ε, ε).
Multiply the image by random numbers between (0.95, 1.05).
Blur the image by blurring factors of 2− 20 pixels.

Works as long as a human can still recognize the object—i.e.,
as long as the noise isn’t bad enough to hide the object.

Rotate, shift, scale the image.

Works as long as a human would give the rotated, shifted,
scaled image the same label as the un-modified image.



Annealing Mini-Batch Training Data Augmentation Conclusions

Limits of Data Augmentation

It only helps the neural net to learn about the type of variability
that you’ve added. For example, it doesn’t help the network to
learn that the same object can occur in different background
scenes (unless you somehow modify the background scene).



Annealing Mini-Batch Training Data Augmentation Conclusions

Outline

1 Simulated Annealing

2 Mini-Batch Training

3 Data Augmentation

4 Conclusions



Annealing Mini-Batch Training Data Augmentation Conclusions

Dealing with large training corpora

Simulated annealing: guarantees convergence to the globally
optimum network weights, but takes a very long time to train.

SGD: computationally cheap alternative to simulated
annealing (with no theoretical proof that it works), but
sometimes has too much variability.

Mini-batch training: optimize the mini-batch size to fit your
GPU, and to trade off between too much versus too little
variability. Often m ≈ 32− 128.

Data augmentation. Helps to make a small corpus larger. Use
your creativity: use every image modification you can think of,
as long as it doesn’t change the label of the image.


	Simulated Annealing
	Mini-Batch Training
	Data Augmentation
	Conclusions

