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Two-Layer Feedforward Neural Network

1 x1 x2 . . . xp ~x is the input vector

ak = uk0 +
∑p

j=1 ukjxj ~a = U~x

1 y1 y2 . . . yq yk = f (ak) ~y = f (~a)

b` = vk0 +
∑q

k=1 v`kyk ~b = V ~y

z1 z2 . . . zr z` = g(b`) ~z = g(~b)

~z = h(~x ,U,V )

which is decomposed as. . .
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A Neural Net is Made Of. . .

Linear transformations: ~a = U~x , ~b = V ~y , one per layer.

Scalar nonlinearities: ~y = f (~a) means that,
element-by-element, yk = f (ak) for some nonlinear function
f (·).

The nonlinearities can all be different, if you want. For today,
I’ll assume that all nodes in the first layer use one function
f (·), and all nodes in the second layer use some other function
g(·).

Networks with more than two layers are called “Deep Neural
Networks” (DNN). I won’t talk about them today.

Andrew Barron (1993) proved that combining two layers of linear
transforms, with one scalar nonlinearity between them, is enough
to model any multivariate nonlinear function ~z = h(~x).
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Neural Network = Universal Approximator

Assume. . .

Linear Output Nodes: g(b) = b

Smoothly Nonlinear Hidden Nodes: f ′(a) = df
da finite

Smooth Target Function: ~z = h(~x ,U,V ) approximates
~ζ = h∗(~x) ∈ H, where H is some class of sufficiently smooth
functions of ~x (functions whose Fourier transform has a first
moment less than some finite number C )

There are q hidden nodes, yk , 1 ≤ k ≤ q

The input vectors are distributed with some probability density
function, p(~x), over which we can compute expected values.

Then (Barron, 1993) showed that. . .

max
h∗(~x)∈H

min
U,V

E
[
h(~x ,U,V )− h∗(~x)|2

]
≤ O

{
1

q

}
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Neural Network Problems: Outline of Remainder of this Talk

1 Knowledge-Based Design. Given U,V , f , g , what kind of
function is h(~x ,U,V )? Can we draw ~z as a function of ~x?
Can we heuristically choose U and V so that ~z looks kinda
like ~ζ?

2 Nonlinearities. They come in pairs: the test-time
nonlinearity, and the training-time nonlinearity.

3 Error Metric. In what way should ~z = h(~x) be “similar to”
~ζ = h∗(~x)?

4 Training: Gradient Descent with Back-Propagation.
Given an initial U,V , how do I find Û, V̂ that more closely
approximate ~ζ?
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Synapse, First Layer: ak = uk0 +
∑2

j=1 ukjxj
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Axon, First Layer: yk = tanh(ak)
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Synapse, Second Layer: b` = v`0 +
∑2

k=1 v`kyk
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Axon, Second Layer: z` = sign(b`)
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Differentiable and Non-differentiable Nonlinearities

The nonlinearities come in pairs: (1) the test-time nonlinearity is
the one that you use in the output layer of your learned
classifier, e.g., in the app on your cell phone (2) the
training-time nonlinearity is used in the output layer during
training, and in the hidden layers during both training and test.

Application Test-Time Training-Time
Output Output & Hidden

Nonlinearity Nonlinearity

{0, 1} classification step logistic or ReLU
{−1,+1} classification signum tanh
multinomial classification argmax softmax
regression linear (hidden nodes

must be
nonlinear)
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Step and Logistic nonlinearities Signum and Tanh nonlinearities
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“Linear Nonlinearity” and ReLU Argmax and Softmax

Argmax:

z` =

{
1 b` = maxm bm
0 otherwise

Softmax:

z` =
eb`∑
m ebm
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Error Metric: MMSE for Linear Output Nodes

Minimum Mean Squared Error (MMSE)

U∗,V ∗ = arg minE = arg min
1

2n

n∑
i=1

|~ζi − ~z(xi )|2

Why would we want to use this metric?

If the training samples (~xi , ~ζi ) are i.i.d., then in the limit as the
number of training tokens goes to infinity,

h(~x)→ E
[
~ζ|~x
]
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Error Metric: MMSE for Binary Target Vector

Binary target vector

Suppose

ζ` =

{
1 with probability P`(~x)
0 with probability 1− P`(~x)

and suppose 0 ≤ z` ≤ 1, e.g., logistic output nodes.

Why does MMSE make sense for binary targets?

E [ζ`|~x ] = 1 · P`(~x) + 0 · (1− P`(~x))

= P`(~x)

So the MMSE neural network solution is

h(~x)→ E
[
~ζ|~x
]

= P`(~x)
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Softmax versus Logistic Output Nodes

Encoding the Neural Net Output using a “One-Hot Vector”

Suppose ~ζi is a “one hot” vector, i.e., only one element is
“hot” (ζ`(i),i = 1), all others are “cold” (ζmi = 0, m 6= `(i)).

Training logistic output nodes with MMSE training will
approach the solution z` = Pr {ζ` = 1|~x}, but there’s no
guarantee that it’s a correctly normalized pmf (

∑
z` = 1)

until it has fully converged.

Softmax output nodes guarantee that
∑

z` = 1.

Softmax output nodes

z` =
eb`∑
m ebm
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Cross-Entropy

The softmax nonlinearity is “matched” to an error criterion called
“cross-entropy,” in the sense that its derivative can be simplified to
have a very, very simple form.

ζ`,i is the true reference probability that observation ~xi is of
class `. In most cases, this “reference probability” is either 0
or 1 (one-hot).

z`,i is the neural network’s hypothesis about the probability
that ~xi is of class `. The softmax function constrains this to
be 0 ≤ z`,i ≤ 1 and

∑
` z`,i = 1.

The average cross-entropy between these two distributions is

E = −1

n

n∑
i=1

∑
`

ζ`,i log z`,i
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Cross-Entropy = Log Probability

Suppose token ~xi is of class `∗, meaning that ζ`∗,i = 1, and all
others are zero. Then cross-entropy is just the neural net’s
estimate of the negative log probability of the correct class:

E = −1

n

n∑
i=1

log z`∗,i

In other words, E is the average of the negative log probability of
each training token:

E = −1

n

n∑
i=1

Ei , Ei = − log z`∗,i
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Cross-Entropy is matched to softmax

Now let’s plug in the softmax:

Ei = − log z`∗,i , z`∗,i =
eb`∗,i∑
k e

bki

Its gradient with respect to the softmax inputs, bmi , is

∂Ei

∂bmi
= − 1

z`∗,i

∂z`∗,i
∂bmi

=


− 1

z`∗,i

(
e
b`∗,i∑
k e

bki
−

(
e
b`∗,i

)2
(
∑

k e
bki )

2

)
m = `∗

− 1
z`∗,i

(
− e

b`∗,i ebmi

(
∑

k e
bki )

2

)
m 6= `∗

= zmi − ζmi
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Error Metrics Summarized

Use MSE to achieve ~z = E
[
~ζ|~x
]
. That’s almost always what

you want.

If ~ζ is a one-hot vector, then use Cross-Entropy (with a
softmax nonlinearity on the output nodes) to guarantee that ~z
is a properly normalized probability mass function, and
because it gives you the amazingly easy formula
∂Ei
∂bmi

= zmi − ζmi .

If ζ` is binary, but not necessarily one-hot, then use MSE
(with a logistic nonlinearity) to achieve z` = Pr {ζ` = 1|~x}.
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Gradient Descent = Local Optimization
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Gradient Descent = Local Optimization

Given an initial U,V , find Û, V̂ with lower error.

ûkj = ukj − η
∂E

∂ukj

v̂`k = v`k − η
∂E

∂v`k

η =Learning Rate

If η too large, gradient descent won’t converge. If too small,
convergence is slow. Usually we pick η ≈ 0.001, then see
whether it converges or not; if not, we tweak η and then try
again.

Second-order methods like Newton’s algorithm, L-BFGS,
ADAM, and Hessian-free optimization choose an optimal η at
each step, so they’re MUCH faster.
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Computing the Gradient

E =
1

n

n∑
i=1

Ei , Ei = cross-entropy or MMSE

∂E

∂v`k
=

1

n

n∑
i=1

(
∂E

∂b`i

)(
∂b`i
∂v`k

)
=

1

n

n∑
i=1

ε`iyki

where I’ve used one thing you already know, and one new
definition. Here’s the thing you already know:

b`i =
∑
k

v`kyki , therefore
∂b`i
∂v`k

= yki

Here’s the new definition:

ε`i =
∂Ei

∂b`i
=

{
z`i − ζ`i Cross-Entropy with Softmax
(z`i − ζ`i )g ′(b`i ) MMSE with Nonlinearity g(b)



Intro Design Nonlinearities Metric Gradient

Forward Propagation and Back-Propagation

∂E

∂v`k
=

1

n

n∑
i=1

ε`iyki

First, yji and z`i are generated from ~xi in the forward pass.

Then ε`i is generated from z`i − ζ`i in the back-propagation.
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g ′(b): Derivatives of the Nonlinearities

Logistic Tanh ReLU
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1 x1 x2 . . . xp ~x is the input vector

ak = uk0 +
∑p

j=1 ukjxj ~a = U~x

1 y1 y2 . . . yq yk = f (ak) ~y = f (~a)

b` = vk0 +
∑q

k=1 v`kyk ~b = V ~y

z1 z2 . . . zr z` = g(b`) ~z = g(~b)

~z = h(~x ,U,V )

which is decomposed as. . .

Back-Propagating to the First Layer

∂E

∂ukj
=

1

n

n∑
i=1

(
∂E

∂aki

)(
∂aki
∂ukj

)
=

1

n

n∑
i=1

δkixji

where. . . δki =
∂Ei

∂aki
=

r∑
`=1

ε`iv`k f
′(aki )
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Forward Propagation and Back-Propagation

∂E

∂v`k
=

1

n

n∑
i=1

ε`iyki

∂E

∂ukj
=

1

n

n∑
i=1

δkixji

First, yji and z`i are generated from ~xi in the forward pass.

Then ε`i and δki are generated from z`i − ζ`i in the
back-propagation.
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