
Intro Design Nonlinearities Metric Gradient

ECE 417 Fall 2018 Lecture 17: Neural Networks

Mark Hasegawa-Johnson

University of Illinois

October 23, 2018

Intro Design Nonlinearities Metric Gradient

Outline

1 What is a Neural Net?

2 Knowledge-Based Design

3 Nonlinearities

4 Error Metric

5 Gradient Descent

Intro Design Nonlinearities Metric Gradient

Two-Layer Feedforward Neural Network

1 x1 x2 . . . xp ~x is the input vector

ak = uk0 +
∑p

j=1 ukjxj ~a = U~x

1 y1 y2 . . . yq yk = f (ak) ~y = f (~a)

b` = vk0 +
∑q

k=1 v`kyk ~b = V ~y

z1 z2 . . . zr z` = g(b`) ~z = g(~b)

~z = h(~x ,U,V)

which is decomposed as. . .

Intro Design Nonlinearities Metric Gradient

A Neural Net is Made Of. . .

Linear transformations: ~a = U~x , ~b = V ~y , one per layer.

Scalar nonlinearities: ~y = f (~a) means that,
element-by-element, yk = f (ak) for some nonlinear function
f (·).

The nonlinearities can all be different, if you want. For today,
I’ll assume that all nodes in the first layer use one function
f (·), and all nodes in the second layer use some other function
g(·).

Networks with more than two layers are called “Deep Neural
Networks” (DNN). I won’t talk about them today.

Andrew Barron (1993) proved that combining two layers of linear
transforms, with one scalar nonlinearity between them, is enough
to model any multivariate nonlinear function ~z = h(~x).

Intro Design Nonlinearities Metric Gradient

Neural Network = Universal Approximator

Assume. . .

Linear Output Nodes: g(b) = b

Smoothly Nonlinear Hidden Nodes: f ′(a) = df
da finite

Smooth Target Function: ~z = h(~x ,U,V) approximates
~ζ = h∗(~x) ∈ H, where H is some class of sufficiently smooth
functions of ~x (functions whose Fourier transform has a first
moment less than some finite number C)

There are q hidden nodes, yk , 1 ≤ k ≤ q

The input vectors are distributed with some probability density
function, p(~x), over which we can compute expected values.

Then (Barron, 1993) showed that. . .

max
h∗(~x)∈H

min
U,V

E
[
h(~x ,U,V)− h∗(~x)|2

]
≤ O

{
1

q

}

Intro Design Nonlinearities Metric Gradient

Neural Network Problems: Outline of Remainder of this Talk

1 Knowledge-Based Design. Given U,V , f , g , what kind of
function is h(~x ,U,V)? Can we draw ~z as a function of ~x?
Can we heuristically choose U and V so that ~z looks kinda
like ~ζ?

2 Nonlinearities. They come in pairs: the test-time
nonlinearity, and the training-time nonlinearity.

3 Error Metric. In what way should ~z = h(~x) be “similar to”
~ζ = h∗(~x)?

4 Training: Gradient Descent with Back-Propagation.
Given an initial U,V , how do I find Û, V̂ that more closely
approximate ~ζ?

Intro Design Nonlinearities Metric Gradient

Outline

1 What is a Neural Net?

2 Knowledge-Based Design

3 Nonlinearities

4 Error Metric

5 Gradient Descent

Intro Design Nonlinearities Metric Gradient

Synapse, First Layer: ak = uk0 +
∑2

j=1 ukjxj

Intro Design Nonlinearities Metric Gradient

Axon, First Layer: yk = tanh(ak)

Intro Design Nonlinearities Metric Gradient

Synapse, Second Layer: b` = v`0 +
∑2

k=1 v`kyk

Intro Design Nonlinearities Metric Gradient

Axon, Second Layer: z` = sign(b`)

Intro Design Nonlinearities Metric Gradient

Outline

1 What is a Neural Net?

2 Knowledge-Based Design

3 Nonlinearities

4 Error Metric

5 Gradient Descent

Intro Design Nonlinearities Metric Gradient

Differentiable and Non-differentiable Nonlinearities

The nonlinearities come in pairs: (1) the test-time nonlinearity is
the one that you use in the output layer of your learned
classifier, e.g., in the app on your cell phone (2) the
training-time nonlinearity is used in the output layer during
training, and in the hidden layers during both training and test.

Application Test-Time Training-Time
Output Output & Hidden

Nonlinearity Nonlinearity

{0, 1} classification step logistic or ReLU
{−1,+1} classification signum tanh
multinomial classification argmax softmax
regression linear (hidden nodes

must be
nonlinear)

Intro Design Nonlinearities Metric Gradient

Step and Logistic nonlinearities Signum and Tanh nonlinearities

Intro Design Nonlinearities Metric Gradient

“Linear Nonlinearity” and ReLU Argmax and Softmax

Argmax:

z` =

{
1 b` = maxm bm
0 otherwise

Softmax:

z` =
eb`∑
m ebm

Intro Design Nonlinearities Metric Gradient

Outline

1 What is a Neural Net?

2 Knowledge-Based Design

3 Nonlinearities

4 Error Metric

5 Gradient Descent

Intro Design Nonlinearities Metric Gradient

Error Metric: MMSE for Linear Output Nodes

Minimum Mean Squared Error (MMSE)

U∗,V ∗ = arg minE = arg min
1

2n

n∑
i=1

|~ζi − ~z(xi)|2

Why would we want to use this metric?

If the training samples (~xi , ~ζi) are i.i.d., then in the limit as the
number of training tokens goes to infinity,

h(~x)→ E
[
~ζ|~x
]

Intro Design Nonlinearities Metric Gradient

Error Metric: MMSE for Binary Target Vector

Binary target vector

Suppose

ζ` =

{
1 with probability P`(~x)
0 with probability 1− P`(~x)

and suppose 0 ≤ z` ≤ 1, e.g., logistic output nodes.

Why does MMSE make sense for binary targets?

E [ζ`|~x] = 1 · P`(~x) + 0 · (1− P`(~x))

= P`(~x)

So the MMSE neural network solution is

h(~x)→ E
[
~ζ|~x
]

= P`(~x)

Intro Design Nonlinearities Metric Gradient

Softmax versus Logistic Output Nodes

Encoding the Neural Net Output using a “One-Hot Vector”

Suppose ~ζi is a “one hot” vector, i.e., only one element is
“hot” (ζ`(i),i = 1), all others are “cold” (ζmi = 0, m 6= `(i)).

Training logistic output nodes with MMSE training will
approach the solution z` = Pr {ζ` = 1|~x}, but there’s no
guarantee that it’s a correctly normalized pmf (

∑
z` = 1)

until it has fully converged.

Softmax output nodes guarantee that
∑

z` = 1.

Softmax output nodes

z` =
eb`∑
m ebm

Intro Design Nonlinearities Metric Gradient

Cross-Entropy

The softmax nonlinearity is “matched” to an error criterion called
“cross-entropy,” in the sense that its derivative can be simplified to
have a very, very simple form.

ζ`,i is the true reference probability that observation ~xi is of
class `. In most cases, this “reference probability” is either 0
or 1 (one-hot).

z`,i is the neural network’s hypothesis about the probability
that ~xi is of class `. The softmax function constrains this to
be 0 ≤ z`,i ≤ 1 and

∑
` z`,i = 1.

The average cross-entropy between these two distributions is

E = −1

n

n∑
i=1

∑
`

ζ`,i log z`,i

Intro Design Nonlinearities Metric Gradient

Cross-Entropy = Log Probability

Suppose token ~xi is of class `∗, meaning that ζ`∗,i = 1, and all
others are zero. Then cross-entropy is just the neural net’s
estimate of the negative log probability of the correct class:

E = −1

n

n∑
i=1

log z`∗,i

In other words, E is the average of the negative log probability of
each training token:

E = −1

n

n∑
i=1

Ei , Ei = − log z`∗,i

Intro Design Nonlinearities Metric Gradient

Cross-Entropy is matched to softmax

Now let’s plug in the softmax:

Ei = − log z`∗,i , z`∗,i =
eb`∗,i∑
k e

bki

Its gradient with respect to the softmax inputs, bmi , is

∂Ei

∂bmi
= − 1

z`∗,i

∂z`∗,i
∂bmi

=

− 1

z`∗,i

(
e
b`∗,i∑
k e

bki
−

(
e
b`∗,i

)2
(
∑

k e
bki)

2

)
m = `∗

− 1
z`∗,i

(
− e

b`∗,i ebmi

(
∑

k e
bki)

2

)
m 6= `∗

= zmi − ζmi

Intro Design Nonlinearities Metric Gradient

Error Metrics Summarized

Use MSE to achieve ~z = E
[
~ζ|~x
]
. That’s almost always what

you want.

If ~ζ is a one-hot vector, then use Cross-Entropy (with a
softmax nonlinearity on the output nodes) to guarantee that ~z
is a properly normalized probability mass function, and
because it gives you the amazingly easy formula
∂Ei
∂bmi

= zmi − ζmi .

If ζ` is binary, but not necessarily one-hot, then use MSE
(with a logistic nonlinearity) to achieve z` = Pr {ζ` = 1|~x}.

Intro Design Nonlinearities Metric Gradient

Outline

1 What is a Neural Net?

2 Knowledge-Based Design

3 Nonlinearities

4 Error Metric

5 Gradient Descent

Intro Design Nonlinearities Metric Gradient

Gradient Descent = Local Optimization

Intro Design Nonlinearities Metric Gradient

Gradient Descent = Local Optimization

Given an initial U,V , find Û, V̂ with lower error.

ûkj = ukj − η
∂E

∂ukj

v̂`k = v`k − η
∂E

∂v`k

η =Learning Rate

If η too large, gradient descent won’t converge. If too small,
convergence is slow. Usually we pick η ≈ 0.001, then see
whether it converges or not; if not, we tweak η and then try
again.

Second-order methods like Newton’s algorithm, L-BFGS,
ADAM, and Hessian-free optimization choose an optimal η at
each step, so they’re MUCH faster.

Intro Design Nonlinearities Metric Gradient

Computing the Gradient

E =
1

n

n∑
i=1

Ei , Ei = cross-entropy or MMSE

∂E

∂v`k
=

1

n

n∑
i=1

(
∂E

∂b`i

)(
∂b`i
∂v`k

)
=

1

n

n∑
i=1

ε`iyki

where I’ve used one thing you already know, and one new
definition. Here’s the thing you already know:

b`i =
∑
k

v`kyki , therefore
∂b`i
∂v`k

= yki

Here’s the new definition:

ε`i =
∂Ei

∂b`i
=

{
z`i − ζ`i Cross-Entropy with Softmax
(z`i − ζ`i)g ′(b`i) MMSE with Nonlinearity g(b)

Intro Design Nonlinearities Metric Gradient

Forward Propagation and Back-Propagation

∂E

∂v`k
=

1

n

n∑
i=1

ε`iyki

First, yji and z`i are generated from ~xi in the forward pass.

Then ε`i is generated from z`i − ζ`i in the back-propagation.

Intro Design Nonlinearities Metric Gradient

g ′(b): Derivatives of the Nonlinearities

Logistic Tanh ReLU

Intro Design Nonlinearities Metric Gradient

1 x1 x2 . . . xp ~x is the input vector

ak = uk0 +
∑p

j=1 ukjxj ~a = U~x

1 y1 y2 . . . yq yk = f (ak) ~y = f (~a)

b` = vk0 +
∑q

k=1 v`kyk ~b = V ~y

z1 z2 . . . zr z` = g(b`) ~z = g(~b)

~z = h(~x ,U,V)

which is decomposed as. . .

Back-Propagating to the First Layer

∂E

∂ukj
=

1

n

n∑
i=1

(
∂E

∂aki

)(
∂aki
∂ukj

)
=

1

n

n∑
i=1

δkixji

where. . . δki =
∂Ei

∂aki
=

r∑
`=1

ε`iv`k f
′(aki)

Intro Design Nonlinearities Metric Gradient

Forward Propagation and Back-Propagation

∂E

∂v`k
=

1

n

n∑
i=1

ε`iyki

∂E

∂ukj
=

1

n

n∑
i=1

δkixji

First, yji and z`i are generated from ~xi in the forward pass.

Then ε`i and δki are generated from z`i − ζ`i in the
back-propagation.

	What is a Neural Net?
	Knowledge-Based Design
	Nonlinearities
	Error Metric
	Gradient Descent

