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Review: Bayesian Classifier

A Bayesian classifier computes

ℎ 𝑥 = argmax 𝑝*|, 𝑦 𝑥 = argmax 𝑝*(𝑦)𝑝,|*(𝑥|𝑦)
• The prior, 𝑝*(𝑦) is just a lookup table, but…
• The likelihood, 𝑝,|*(𝑥|𝑦), usually needs to be some kind of 

parameterized pdf.  A Gaussian is often an excellent choice.



Gaussian (Normal) pdf

Gauss considered this problem: under what circumstances does it make 
sense to estimate the mean of a distribution, 𝜇, by taking the average 
of the experimental values, m = 1

2
∑4512 𝑥4?

He demonstrated that 𝑚 is the maximum likelihood estimate of 𝜇 if 
(not only if!) X is distributed with the following probability density:

𝑝, 𝑥 =
1
2𝜋𝜎;

𝑒=
1
;
>=?
@
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Gaussian pdf
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Unit Normal pdf

Suppose that X is normal with mean 𝜇 and standard deviation 𝜎
(variance 𝜎;):

𝑝, 𝑥 = 𝒩 𝑥; 𝜇, 𝜎; =
1
2𝜋𝜎;

𝑒=
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;
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Then 𝑈 = ,=?
@

is normal with mean 0 and standard deviation 1:

𝑝F 𝑢 = 𝒩 𝑢; 0,1 =
1
2𝜋
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Central Limit Theorem

The Gaussian pdf is important because of the Central Limit Theorem.  
Suppose 𝑋4 are i.i.d. (independent and identically distributed), each 
having mean 𝜇 and variance 𝜎;.  Then



Brownian motion

The Central Limit Theorem matters 
because Einstein showed that the 
movement of molecules, in a liquid or gas, 
is the sum of n i.i.d. molecular collisions.

In other words, the position after t 
seconds is Gaussian, with mean 0, and 
with a variance of Dt, where D is some 
constant.

Attribution: lookang, 
https://commons.wikimedia.org/wiki/File:Brownianmotion5particles150frame.gif
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Gaussian Noise

• Sound = air pressure fluctuations 
caused by velocity of air molecules
• Velocity of warm air molecules 

without any external sound source = 
Gaussian

Therefore:
• Sound produced by warm air 

molecules without any external sound 
source = Gaussian noise
• Electrical signals: same.  

Attribution Morn, https://commons.wikimedia.org/wiki/File:White_noise.svg



White Noise

• White Noise = noise in which each 
sample of the signal, 𝑥2, is i.i.d.
• Why “white”?  Because the Fourier 

transform, 𝑋(𝜔), is a zero-mean 
random variable whose variance is 
independent of frequency (“white”)
• Gaussian White Noise: x[n] are i.i.d. 

and Gaussian

Attribution Morn, https://commons.wikimedia.org/wiki/File:White_noise.svg
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Vector of Independent Gaussian Variables
Suppose we have a frame containing D samples from a Gaussian white noise 
process, 𝑥1,… , 𝑥M. Let’s stack them up to make a vector:

�⃗� =
𝑥1
∶
𝑥M

This whole frame is random.  In fact, we could say that �⃗� is a sample value 
for a Gaussian random vector called �⃗�, whose elements are 𝑋1,… , 𝑋M:

�⃗� =
𝑋1
∶
𝑋M



Vector of Independent Gaussian Variables

Suppose that the N samples are i.i.d., each one has the same mean, 𝜇, 
and the same variance, 𝜎;.  Then the pdf of this random vector is

𝑝,|* �⃗�|𝑦 = 𝒩 �⃗�; 𝜇, 𝜎;𝐼 = R
251
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The class label, 𝑦, determines the mean and/or the variance of the 
Gaussian.  For example, suppose that the label, 𝑦, is for a scene 
classifier.  Traffic noise (𝑦 =“outside”) has much higher energy (much 
higher 𝜎;) than the background noise in an office building 
(𝑦 =“inside”).  So we assume that 𝜇 and 𝜎; depend on 𝑦.



Vector of Independent Gaussian Variables
For example, here’s an 
example from Wikipedia 
with mean of 50 and 
standard deviation of about 
12.

Attribution: Piotrg, 
https://commons.wikimedia.org/wiki/File:Multivariate_Gaussian.png
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Independent Gaussians that aren’t identically 
distributed
Suppose that the N samples are independent Gaussians that aren’t 
identically distributed, i.e., 𝑋T has mean 𝜇T and variance 𝜎T;.  The pdf 
of 𝑋T is

𝑝,U|* 𝑥T|𝑦 = 𝒩 𝑥T; 𝜇T, 𝜎T; =
1

2𝜋𝜎T;
𝑒=
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The pdf of this random vector is

𝑝,|* �⃗�|𝑦 = 𝒩 �⃗�; 𝜇, Σ = R
T51
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Independent Gaussians that aren’t identically 
distributed
Another useful form is:

R
T51

M
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Example

Suppose that 𝜇1 = 1, 𝜇; = −1, 𝜎1; = 1, 𝜎;; = 4.  Then

𝑓, �⃗� = R
T51

;
1

2𝜋𝜎T;
𝑒=

1
;
>U=?U
@U

A

=
1
4𝜋

𝑒
=1;

>Z=1
1

A
_ >A_1

;
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The pdf has its maximum value, 𝑓, �⃗� = 1
`a

, at �⃗� = 𝜇 = 1
−1 .  

It drops to 1
`a b

at �⃗� = 𝜇1 ± 𝜎1
𝜇;

and at �⃗� =
𝜇1

𝜇; ± 𝜎; .

It drops to 1
`abA

at �⃗� = 𝜇1 ± 2𝜎1
𝜇;

and at �⃗� =
𝜇1

𝜇; ± 2𝜎; . 



Example
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Facts about linear algebra #1: determinant of 
a diagonal matrix
Suppose that Σ is a diagonal matrix, with variances on the diagonal:

Σ =
𝜎1; 0 0
0 𝜎;; …
0 … 𝜎M;

Then the determinant is 

Σ =R
T51

M

𝜎T;

So we can write the Gaussian pdf as

1
2𝜋 M/; Σ 1/; 𝑒
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=
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Facts about linear algebra #2: inner product

Suppose that

�⃗� =
𝑥1
∶
𝑥M

and 𝜇 =
𝜇1
∶
𝜇M

Then
�⃗� − 𝜇 d �⃗� − 𝜇 = 𝑥1 − 𝜇1 ; + ⋯+ 𝑥M − 𝜇M ;



Facts about linear algebra #3: inverse of a 
diagonal matrix
Suppose that Σ is a diagonal matrix, with variances on the diagonal:

Σ =
𝜎1; 0 0
0 𝜎;; …
0 … 𝜎M;

Then its inverse, Σ=1, is 

Σ=1 =

1
𝜎1;

0 0

0
1
𝜎;;

…

0 …
1
𝜎M;



Facts about linear algebra #4: squared 
Mahalanobis distance with a diagonal covariance 
matrix
Suppose that all of the things on the previous slides are true. 
Then the squared Mahalanobis distance is

𝑑h; �⃗�, �⃗� = �⃗� − �⃗� dΣ=1 �⃗� − �⃗� =

𝑥1 − 𝜇1,… , 𝑥M − 𝜇M

1
𝜎1;

0 0

0
1
𝜎;;

…

0 …
1
𝜎M;

𝑥1 − 𝜇1
∶

𝑥M − 𝜇M

=
𝑥1 − 𝜇1 ;

𝜎1;
+⋯+

𝑥M − 𝜇M ;

𝜎M;



Mahalanobis form of the multivariate 
Gaussian, independent dimensions
So we can write the multivariate Gaussian as

𝑝,|* �⃗�|𝑦 = 𝒩 �⃗�; 𝜇, Σ =
1

2𝜋Σ 1/; 𝑒
=1; >⃗=? ihjZ >⃗=?

𝑝,|* �⃗�|𝑦 = 𝒩 �⃗�; 𝜇, Σ =
1

2𝜋Σ 1/; 𝑒
=1;Tk
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Facts about linear algebra #5: ellipses

The formula

1 = �⃗� − 𝜇 dΣ=1 �⃗� − 𝜇
… or equivalently

1 =
𝑥1 − 𝜇1 ;

𝜎1;
+ ⋯+

𝑥M − 𝜇M ;

𝜎M;
… is the formula for an ellipsoid (an ellipse in two dimensions; a football 
shaped object in three dimensions; etc.).  The ellipse is centered at the 
point 𝜇, and it has a volume proportional to Σ .  (In 2D the area of an 
ellipse is 𝜋 Σ 1/;, in 3D it’s `

l
𝜋 Σ 1/;, etc.)



Gaussian contour plots = ellipses

𝑐 = �⃗� − 𝜇 dΣ=1 �⃗� − 𝜇
… is equivalent to 

𝑝,|* �⃗�|𝑦 =
1

2𝜋Σ 1/; 𝑒
=1;n

Therefore the contour plot of a Gaussian pdf --- the curves of constant 
𝑓, �⃗� --- are ellipses.  If Σ is diagonal, the main axes of the ellipse are 
parallel to the 𝑥1, 𝑥;, etc. axes.  If Σ is NOT diagonal, the main axes of the 
ellipse are tilted.



Example
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Mahalanobis form of the multivariate 
Gaussian, dependent dimensions
If the dimensions are dependent, and jointly Gaussian, then we can still 
write the multivariate Gaussian as

𝑝,|* �⃗�|𝑦 = 𝒩 �⃗�; 𝜇, Σ =
1

2𝜋Σ 1/; 𝑒
=1; >⃗=? ihjZ >⃗=?



Example

Suppose that 𝑥1 and 𝑥; are linearly correlated Gaussians with means 1 
and -1, respectively, and with variances 1 and 4, and covariance 1. 

𝜇 = 1
−1

Remember the definitions of variance and covariance: 
𝜎1; = 𝐸 𝑥1 − 𝜇1 ; = 1
𝜎;; = 𝐸 𝑥; − 𝜇; ; = 4

𝜎1; = 𝜎;1 = 𝐸 𝑥1 − 𝜇1 𝑥; − 𝜇; = 1

Σ = 1 1
1 4



Determinant and inverse of a 2x2 matrix
You	should	know	the	determinant	and	inverse	of	a	2x2	matrix.		If

Σ = 𝑎 𝑏
𝑐 𝑑

Then Σ = 𝑎𝑑 − 𝑏𝑐 and 

Σ=1 =
1
Σ

𝑑 −𝑏
−𝑐 𝑎

You should be able to verify the inverse, for yourself, by multiplying 
ΣΣ=1 and discovering that the result is the identity matrix.



Example

Therefore	the	contour	lines	of	this	Gaussian	are	ellipses	centered	at

𝜇 = 1
−1 .

The contour lines are ellipses that satisfy this equation.  Each different 
value of 𝑐 gives a different ellipse:

𝑐 =
4
3
𝑥1 − 1 ; +

1
3
𝑥; + 1 ; −

1
3
𝑥1 − 1 𝑥; + 1



Example



Conclusion: Summary of Today’s Lecture

𝑝,|* �⃗�|𝑦 = 𝒩 �⃗�; �⃗�, Σ =
1

2𝜋Σ 1/; 𝑒
=1; >⃗=? ihjZ >⃗=?


