UNIVERSITY OF ILLINOIS
 Department of Electrical and Computer Engineering ECE 417 Multimedia Signal Processing

Lecture 21 Sample Problem Solutions

Problem 21.1

$\vec{u}=A \vec{x}$, where

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{2}{3} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 20 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
\cos \left(-\frac{\pi}{6}\right) & \sin \left(-\frac{\pi}{6}\right) \\
-\sin \left(-\frac{\pi}{6}\right) & \cos \left(-\frac{\pi}{6}\right) \\
0 & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{2}{3} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 20 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{3} & \frac{\sqrt{3}}{3} & \frac{40}{3} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Problem 21.2

$\vec{u}=A \vec{x}$, where

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
\cos (-\pi / 6) & \sin (-\pi / 6) & 0 \\
-\sin (-\pi / 6) & \cos (-\pi / 6) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 20 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{2}{3} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 20 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & \frac{2}{3} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{\sqrt{3}}{2} & -\frac{1}{3} & -10 \\
\frac{1}{2} & \frac{\sqrt{3}}{3} & -10 \sqrt{3} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Problem 21.3

We have a mapping $U \rightarrow X$ where

$$
U=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \rightarrow X=\left[\begin{array}{lll}
2 & 3 & 4 \\
4 & 2 & 4 \\
1 & 1 & 1
\end{array}\right]
$$

The output point is

$$
\vec{x}=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]
$$

We need to find $\vec{\lambda}$ so that

$$
\vec{x}=X \vec{\lambda}, \quad \vec{\lambda}=X^{-1} \vec{x}
$$

If you know how to invert a 3×3 matrix, you can solve the problem that way. You might be required to invert a 2×2 matrix by hand on an exam in this course, but you would not be required to invert a 3×3 matrix, because it's too much work - there will always be some kind of symmetry you can take advantage of. In this case, you can take advantage of symmetry to see that

$$
\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
4 \\
4 \\
1
\end{array}\right]
$$

Therefore

$$
\vec{u}=\frac{1}{4}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0.25 \\
0.75 \\
1
\end{array}\right]
$$

