UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering ECE 417 Multimedia Signal Processing

Lecture 19 Sample Problem Solutions

Problem 19.1

1.

$$
\begin{aligned}
& a_{i}=u_{1} x_{i}+u_{0}=x_{i} \\
& y_{i}=\sigma\left(a_{i}\right)=\sigma\left(x_{i}\right) \\
&=\{\sigma(-4.97), \sigma(-1), \sigma(1), \sigma(4.97)\} \\
& E_{i}=\frac{1}{2}\left(y_{i}-\zeta_{i}\right)^{2}=\frac{1}{2}\left(\sigma\left(x_{i}\right)-\zeta_{i}\right)^{2} \\
&=\left\{\frac{1}{2}(1-\sigma(-4.97))^{2}, \frac{1}{2} \sigma(-1)^{2}, \frac{1}{2}(1-\sigma(1))^{2}, \frac{1}{2} \sigma(4.97)^{2}\right\} \\
&=\left\{\frac{1}{2}(-\sigma(4.97))^{2}, \frac{1}{2} \sigma(-1)^{2}, \frac{1}{2}(-\sigma(-1))^{2}, \frac{1}{2} \sigma(4.97)^{2}\right\} \\
&=\left\{\frac{1}{2}(0.99), \frac{1}{2}(0.07), \frac{1}{2}(0.07), \frac{1}{2}(0.99)\right\} \\
& E E=\frac{1}{4} \sum E_{i}=\frac{1}{8}(2.12)=0.265
\end{aligned}
$$

2. Suppose, for example, $u_{1}=-10000$, and $u_{0}=20000$. Then

$$
\begin{aligned}
a_{i} & =\{69700,30000,10000,-39700\} \\
y_{i} & =\sigma\left(a_{i}\right) \approx\{1,1,1,0\} \\
E_{i} & =\frac{1}{2}\left(y_{i}-\zeta_{i}\right)^{2}=\{0,0.5,0,0\} \\
E & =\frac{1}{4} \sum E_{i}=\frac{1}{8}
\end{aligned}
$$

3.

$$
\begin{aligned}
\delta_{i} & =\frac{\partial E_{i}}{\partial a_{i}}=\frac{\partial E_{i}}{\partial y_{i}} \frac{\partial y_{i}}{\partial a_{i}} \\
& =\left(y_{i}-\zeta_{i}\right) \sigma^{\prime}\left(a_{i}\right)=\left(\sigma\left(x_{i}\right)-\zeta_{i}\right) \sigma^{\prime}\left(a_{i}\right) \\
& =\left\{(\sigma(-4.97)-1) \sigma^{\prime}(-4.97),(\sigma(-1)-0) \sigma^{\prime}(-1),(\sigma(1)-1) \sigma^{\prime}(1),(\sigma(4.97)-0) \sigma^{\prime}(4.97)\right\} \\
& =\left\{-\sigma(4.97) \sigma^{\prime}(4.97), \sigma(-1) \sigma^{\prime}(-1),-\sigma(-1) \sigma^{\prime}(-1), \sigma(4.97) \sigma^{\prime}(4.97)\right\} \\
& =\{-0.0134,0.067,-0.067,0.0134\} \\
\frac{\partial E_{i}}{\partial u_{0}} & =\frac{\partial E_{i}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{0}} \\
& =\delta_{i} \\
\sum \frac{\partial E_{i}}{\partial u_{0}} & =0 \\
\frac{\partial E_{i}}{\partial u_{1}} & =\frac{\partial E_{i}}{\partial a_{i}} \frac{\partial a_{i}}{\partial u_{1}} \\
& =\delta_{i} x_{i} \\
& =\{0.067,-0.067,-0.067,0.067\} \\
\sum \frac{\partial E_{i}}{\partial u_{1}} & =0
\end{aligned}
$$

Since $\sum \frac{\partial E_{i}}{\partial u_{0}}=0, u_{0}$ does not change. Since $\sum \frac{\partial E_{i}}{\partial u_{1}}=0, u_{1}$ does not change. So the neural net stays in this sub-optimal configuration.
4. For example, if SGD were to randomly choose to present token $\# 1$ over and over again, then u_{0} would keep changing by $-\frac{\partial E_{1}}{\partial u_{0}}=0.0134$, and u_{1} would keep changing by $-\frac{\partial E_{1}}{\partial u_{1}}=-0.067$. After u_{1} goes negative (and by this time u_{0} would be a big positive number), then we would start to present all of the tokens one after the other.

