UNIVERSITY OF ILLINOIS
 Department of Electrical and Computer Engineering
 ECE 417 Multimedia Signal Processing

Lecture 11 Sample Problem Solutions

Problem 11.1

1. The standard way to implement 2 D convolution is

$$
\begin{equation*}
f\left[n_{1}, n_{2}\right]=\sum_{m_{1}=\infty}^{\infty} \sum_{m_{2}=-\infty}^{\infty} x\left[m_{1}, m_{2}\right] h\left[n_{1}-m_{1}, n_{2}-m_{2}\right] \tag{11.1-1}
\end{equation*}
$$

Eq. 11.1-1 requires a double-summation, with up to $M_{1} M_{2}$ non-zero terms in the summation, in order to compute each output pixel. There are $\left(N_{1}+M_{1}-1\right) \times\left(N_{2}+M_{2}-1\right)=\mathcal{O}\left\{N_{1} N_{2}\right\}$ output pixels. So the total complexity is $\mathcal{O}\left\{N_{1} N_{2} M_{1} M_{2}\right\}$.
More loosely, if $N_{1} \approx N_{2} \approx M_{1} \approx M_{2} \approx N$, then we can say that standard convolution has a complexity of $\mathcal{O}\left\{N^{4}\right\}$.
2. The integral image is

$$
i\left[n_{1}, n_{2}\right]=\sum_{m_{1}=0}^{n_{1}} \sum_{m_{2}=0}^{n_{2}} x\left[m_{1}, m_{2}\right]
$$

It can be computed in three operations per output pixel:

$$
i\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right]+i\left[n_{1}-1, n_{2}\right]+i\left[n_{1}, n_{2}-1\right]-i\left[n_{1}-1, n_{2}-1\right]
$$

The feature we are trying to compute is

$$
\begin{aligned}
f\left[n_{1}, n_{2}\right]= & \sum_{m_{1}=n_{1}-M_{1} / 2+1}^{n_{1}} \sum_{m_{2}=n_{2}-M_{2} / 2+1}^{n_{2}} x\left[n_{1}, n_{2}\right] \\
& -\sum_{m_{1}=n_{1}-M_{1} / 2+1}^{n_{1}} \sum_{m_{2}=n_{2}-M_{2}+1}^{n_{2}-M_{2} / 2} x\left[n_{1}, n_{2}\right] \\
& -\sum_{m_{1}=n_{1}-M_{1}+1}^{n_{1}-M_{1}} \sum_{m_{2}=n_{2}-M_{2} / 2+1}^{n_{2}} x\left[n_{1}, n_{2}\right] \\
& -\sum_{m_{1}=n_{1}-M_{1}+1}^{n_{1}-M_{1} / 2} \sum_{m_{2}=n_{2}-M_{2}+1}^{n_{2}-M_{2} / 2} x\left[n_{1}, n_{2}\right]
\end{aligned}
$$

Which can be computed in just eight operations per output pixel, as

$$
\begin{array}{cc}
f\left[n_{1}, n_{2}\right] & =i\left[n_{1}, n_{2}\right]-2 i\left[n_{1}-\frac{M_{1}}{2}, n_{2}\right]+i\left[n_{1}-M_{1}, n_{2}\right] \\
-2 i\left[n_{1}, n_{2}-\frac{M_{2}}{2}\right]+4 i\left[n_{1}-\frac{M_{1}}{2}, n_{2}-\frac{M_{2}}{2}\right]-2 i\left[n_{1}-M_{1}, n_{2}-\frac{M_{2}}{2}\right] \\
& +i\left[n_{1}, n_{2}-M_{2}\right]-2 i\left[n_{1}-\frac{M_{1}}{2}, n_{2}-M_{2}\right]+i\left[n_{1}-M_{1}, n_{2}-M_{2}\right]
\end{array}
$$

So the total complexity is just $8+3=11$ additions per output pixel, for a total of $11 N_{1} N_{2}=\mathcal{O}\left\{N_{1} N_{2}\right\}$ additions.

