UNIVERSITY OF ILLINOIS
Department of Electrical and Computer Engineering
ECE 417 Multimedia Signal Processing

Lecture 22 Sample Problems

Problem 22.1

Suppose you're given a training database of 200 examples. Each example includes a two-dimensional real-valued feature vector \vec{x}_{i} and a two-dimensional one-hot label vector $\vec{\zeta}_{i}$. As it turns out, though, all examples from class $\vec{\zeta}=[1,0]$ have the same \vec{x}, and all examples from class $\vec{\zeta}=[0,1]$ have the same class:

$$
\left(\vec{x}_{i}, \vec{\zeta}_{i}\right)= \begin{cases}\left(\left[\begin{array}{c}
2 \\
-2
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) & 1 \leq i \leq 100 \\
\left(\left[\begin{array}{c}
-2 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \quad 101 \leq i \leq 200\end{cases}
$$

You want to train a one-layer neural net using a softmax output:

$$
y_{k i}=\frac{e^{a_{k i}}}{\sum_{m} e^{a_{m i}}}, \quad \vec{a}_{i}=U \vec{x}_{i}
$$

Since both \vec{y} and \vec{x} are 2D vectors, U is a 2×2 matrix. Its coefficients are trained to minimize cross-entropy

$$
u_{k j} \leftarrow u_{k j}-\eta \frac{\partial E}{\partial u_{k j}}, \quad E=-\frac{1}{200} \sum_{i=1}^{200} \sum_{k=1}^{2} \zeta_{k i} \ln y_{k i}
$$

With initial values $u_{k j}=0$. Find $u_{k j}$ after one round of gradient-descent training, assuming $\eta=1$. Notice that after one round of training, the training corpus is classified with 100% accuracy! Notice also that the second row of U is -1 times the first row-that will always be true for a two-class softmax. Why?

Problem 22.2

Suppose you're given a training database of just 4 training examples. Each example includes a twodimensional real-valued feature vector \vec{x}_{i} and a two-dimensional one-hot label vector $\vec{\zeta}_{i}$:

$$
\left(\vec{x}_{i}, \vec{\zeta}_{i}\right)= \begin{cases}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) & i=1 \\
\left(\left[\begin{array}{c}
-1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) & i=2 \\
\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) & i=3 \\
\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) & i=4\end{cases}
$$

You want to train a two-layer neural net using a softmax output and logistic hidden units:

$$
z_{\ell i}=\frac{e^{b_{\ell i}}}{\sum_{m} e^{b_{m i}}}, \quad \vec{b}_{i}=V \vec{y}_{i}
$$

$$
y_{k i}=\sigma\left(a_{k i}\right), \quad \vec{a}_{i}=U \vec{x}_{i}
$$

Suppose that U and V are initialized as all-zero matrices. Use forward propagation to compute \vec{y}_{i} and \vec{z}_{i} for each training token, then use back-propagation to compute $\vec{\epsilon}_{i}$ and $\vec{\delta}_{i}$ for each training token, then use the outer products to find

$$
V^{(1)}=V^{(0)}-\frac{1}{n} \sum_{i=1}^{n} \vec{\epsilon}_{i} \vec{y}_{i}^{T}, \quad U^{(1)}=U^{(0)}-\frac{1}{n} \sum_{i=1}^{n} \vec{\delta}_{i} \vec{x}_{i}^{T}
$$

Notice that, because of the symmetry of this problem, starting from an all-zero initialization will result in a neural net that never trains. In order to train this neural net, you would have to break the symmetry by starting with small random initial values in U and V.

