Lecture 26: Neural Nets

ECE 417: Multimedia Signal Processing Mark Hasegawa-Johnson

University of Illinois

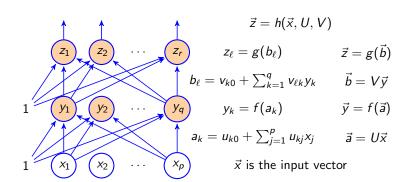
11/30/2017

- Intro
- 2 Knowledge-Based Design
- 3 Error Metric
- 4 Gradient Descent
- 5 Simulated Annealing
- 6 Example Dataset
- Conclusions

Outline

- Intro
- 2 Knowledge-Based Design
- 3 Error Metric
- Gradient Descent
- 5 Simulated Annealing
- 6 Example Dataset
- Conclusions

Two-Layer Feedforward Neural Network



Neural Network = Universal Approximator

Assume. . .

- Linear Output Nodes: g(b) = b
- Smoothly Nonlinear Hidden Nodes: $f'(a) = \frac{df}{da}$ finite
- Smooth Target Function: $\vec{z} = h(\vec{x}, U, V)$ approximates $\vec{\zeta} = h^*(\vec{x}) \in \mathcal{H}$, where \mathcal{H} is some class of sufficiently smooth functions of \vec{x} (functions whose Fourier transform has a first moment less than some finite number C)
- There are q hidden nodes, y_k , $1 \le k \le q$
- The input vectors are distributed with some probability density function, $p(\vec{x})$, over which we can compute expected values.

Then (Barron, 1993) showed that...

$$\max_{h^*(\vec{x}) \in \mathcal{H}} \min_{U,V} E\left[h(\vec{x}, U, V) - h^*(\vec{x})|^2\right] \leq \mathcal{O}\left\{\frac{1}{q}\right\}$$

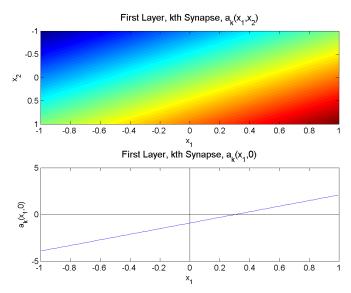
Neural Network Problems: Outline of Remainder of this Talk

- **1 Knowledge-Based Design.** Given U, V, f, g, what kind of function is $h(\vec{x}, U, V)$? Can we draw \vec{z} as a function of \vec{x} ? Can we heuristically choose U and V so that \vec{z} looks kinda like $\vec{\zeta}$?
- **2 Error Metric.** In what way should $\vec{z} = h(\vec{x})$ be "similar to" $\vec{\zeta} = h^*(\vec{x})$?
- **3** Local Optimization: Gradient Descent with Back-Propagation. Given an initial U, V, how do I find \hat{U} , \hat{V} that more closely approximate $\vec{\zeta}$?
- **Global Optimization: Simulated Annealing.** How do I find the globally optimum values of *U* and *V*?

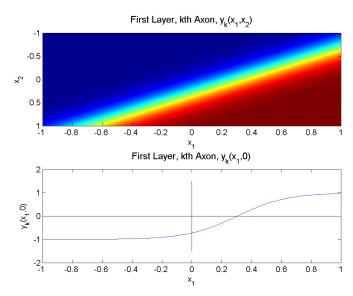
Outline

- 1 Intro
- 2 Knowledge-Based Design
- 3 Error Metric
- Gradient Descent
- Simulated Annealing
- 6 Example Dataset
- Conclusions

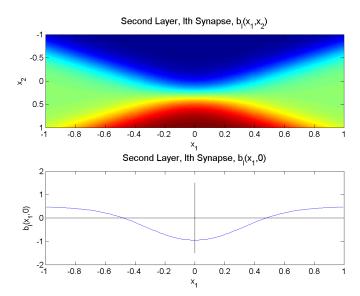
Synapse, First Layer: $a_k = u_{k0} + \sum_{j=1}^{2} u_{kj} x_j$



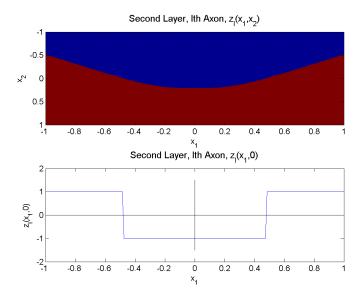
Axon, First Layer: $y_k = \tanh(a_k)$



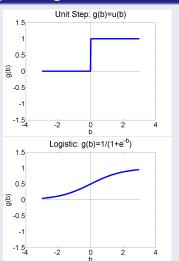
Synapse, Second Layer: $b_\ell = v_{\ell 0} + \sum_{k=1}^2 v_{\ell k} y_k$



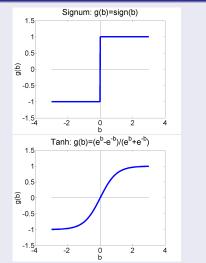
Axon, Second Layer: $z_{\ell} = \operatorname{sign}(b_{\ell})$



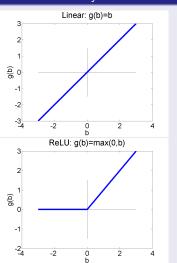
Step and Logistic nonlinearities



Signum and Tanh nonlinearities



"Linear Nonlinearity" and ReLU



Max and Softmax

Max:

$$z_{\ell} = \left\{ egin{array}{ll} 1 & b_{\ell} = \max_{m} b_{m} \ 0 & ext{otherwise} \end{array}
ight.$$

Softmax:

$$z_{\ell} = \frac{e^{b_{\ell}}}{\sum_{m} e^{b_{m}}}$$

Outline

- 1 Intro
- 2 Knowledge-Based Design
- 3 Error Metric
- 4 Gradient Descent
- 5 Simulated Annealing
- 6 Example Dataset
- Conclusions

Design

Error Metric: How should $h(\vec{x})$ be "similar to" $h^*(\vec{x})$? Linear output nodes:

Minimum Mean Squared Error (MMSE)

$$U^*, V^* = \arg\min E_n = \arg\min \frac{1}{n} \sum_{i=1}^n |\vec{\zeta}_i - \vec{z}(x_i)|^2$$

MMSE Solution: $\vec{z} = E \left[\vec{\zeta} | \vec{x} \right]$

If the training samples $(\vec{x_i}, \vec{\zeta_i})$ are i.i.d., then

$$E_{\infty} = E \left[|\vec{\zeta} - \vec{z}|^2 \right]$$

 E_{∞} is minimized by

$$\vec{z}_{MMSE}(\vec{x}) = E\left[\vec{\zeta}|\vec{x}
ight]$$

Error Metric: How should $h(\vec{x})$ be "similar to" $h^*(\vec{x})$? Logistic output nodes:

Binary target vector

Suppose

$$\zeta_{\ell} = \begin{cases} 1 & \text{with probability } P_{\ell}(\vec{x}) \\ 0 & \text{with probability } 1 - P_{\ell}(\vec{x}) \end{cases}$$

and suppose $0 \le z_{\ell} \le 1$, e.g., logistic output nodes.

MMSE Solution: $z_{\ell} = \Pr \{\zeta_{\ell} = 1 | \vec{x} \}$

$$E[\zeta_{\ell}|\vec{x}] = 1 \cdot P_{\ell}(\vec{x}) + 0 \cdot (1 - P_{\ell}(\vec{x}))$$
$$= P_{\ell}(\vec{x})$$

So the MMSE neural network solution is

$$z_{\ell,MMSE}(\vec{x}) = P_{\ell}(\vec{x})$$

Design

One-Hot Vector, MKLD Solution: $z_{\ell} = \Pr\left\{\zeta_{\ell} = 1 | \vec{x} \right\}$

- Suppose $\vec{\zeta_i}$ is a "one hot" vector, i.e., only one element is "hot" $(\zeta_{\ell(i),i}=1)$, all others are "cold" $(\zeta_{mi}=0,\ m\neq\ell(i))$.
- MMSE will approach the solution $z_{\ell} = \Pr{\{\zeta_{\ell} = 1 | \vec{x}\}}$, but there's no guarantee that it's a correctly normalized pmf $(\sum z_{\ell} = 1)$ until it has fully converged.
- MKLD also approaches $z_{\ell} = \Pr{\{\zeta_{\ell} = 1 | \vec{x}\}}$, and guarantees that $\sum z_{\ell} = 1$. MKLD is also more computationally efficient, if $\vec{\zeta}$ is a one-hot vector.

MKLD = Minimum Kullback-Leibler Distortion

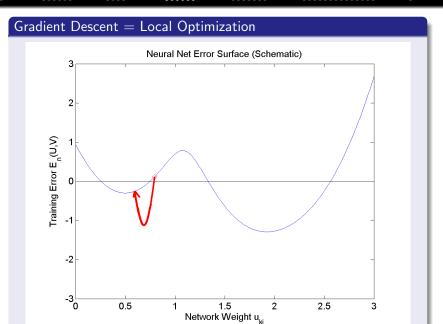
$$D_n = \frac{1}{n} \sum_{i=1}^n \sum_{\ell=1}^r \zeta_{\ell i} \log \left(\frac{\zeta_{\ell i}}{z_{\ell i}} \right) = -\frac{1}{n} \sum_{i=1}^n \log z_{\ell(i),i}$$

Error Metrics Summarized

- Use MSE to achieve $\vec{z}=E\left[\vec{\zeta}|\vec{x}\right]$. That's almost always what you want.
- If $\vec{\zeta}$ is a one-hot vector, then use KLD (with a softmax nonlinearity on the output nodes) to guarantee that \vec{z} is a properly normalized probability mass function, and for better computational efficiency.
- If ζ_ℓ is binary, but not necessarily one-hot, then use MSE (with a logistic nonlinearity) to achieve $z_\ell = \Pr{\{\zeta_\ell = 1 | \vec{x}\}}$.
- If ζ_{ℓ} is signed binary ($\zeta_{\ell} \in \{-1, +1\}$, then use MSE (with a tanh nonlinearity) to achieve $z_{\ell} = E[\zeta_{\ell}|\vec{x}]$.
- After you're done training, you can make your cell phone app more efficient by throwing away the uncertainty:
 - Replace softmax output nodes with max
 - Replace logistic output nodes with unit-step
 - Replace tanh output nodes with signum

Outline

- 1 Intro
- 2 Knowledge-Based Design
- 3 Error Metric
- 4 Gradient Descent
- 5 Simulated Annealing
- 6 Example Dataset
- Conclusions



Gradient Descent = Local Optimization

Given an initial U, V, find \hat{U}, \hat{V} with lower error.

$$\hat{u}_{kj} = u_{kj} - \eta \frac{\partial E_n}{\partial u_{kj}}
\hat{v}_{\ell k} = v_{\ell k} - \eta \frac{\partial E_n}{\partial v_{\ell k}}$$

$\eta =$ Learning Rate

- If η too large, gradient descent won't converge. If too small, convergence is slow. Usually we pick $\eta \approx 0.001$ and cross our fingers.
- \bullet Second-order methods like L-BFGS choose an optimal η at each step, so they're MUCH faster.

Computing the Gradient

OK, let's compute the gradient of E_n with respect to the V matrix. Remember that V enters the neural net computation as $b_{\ell i} = \sum_k v_{\ell k} y_{ki}$, and then z depends on b somehow. So...

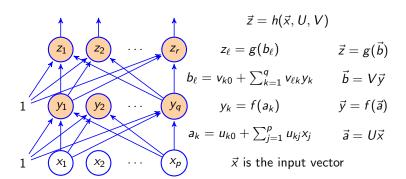
$$\frac{\partial E_n}{\partial v_{\ell k}} = \sum_{i=1}^n \left(\frac{\partial E_n}{\partial b_{\ell i}} \right) \left(\frac{\partial b_{\ell i}}{\partial v_{\ell k}} \right)$$
$$= \sum_{i=1}^n \epsilon_{\ell i} y_{ki}$$

where the last line only works if we define $\epsilon_{\ell i}$ in a useful way:

Back-Propagated Error

$$\epsilon_{\ell i} = \frac{\partial E_n}{\partial b_{\ell i}} = \frac{2}{n} (z_{\ell i} - \zeta_{\ell i}) g'(b_{\ell i})$$

where $g'(b) = \frac{\partial g}{\partial b}$.



Back-Propagating to the First Layer

$$\frac{\partial E_n}{\partial u_{kj}} = \sum_{i=1}^n \left(\frac{\partial E_n}{\partial a_{ki}} \right) \left(\frac{\partial a_{ki}}{\partial u_{kj}} \right) = \sum_{i=1}^n \delta_{ki} x_{ji}$$

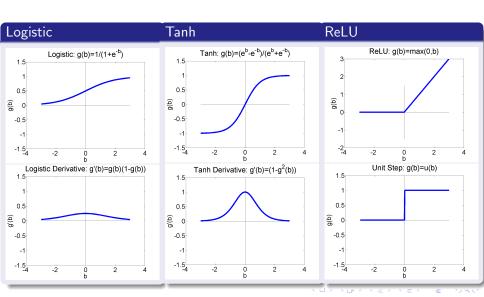
where...
$$\delta_{ki} = \frac{\partial E_n}{\partial a_{ki}} = \sum_{\ell=1}^r \epsilon_{\ell i} v_{\ell k} f'(a_{ki})$$

The Back-Propagation Algorithm

$$\hat{V} = V - \eta \nabla_{V} E_{n}, \qquad \hat{U} = U - \eta \nabla_{U} E_{n}
\nabla_{V} E_{n} = EY^{T}, \qquad \nabla_{U} E_{n} = DX^{T}
Y = [\vec{y}_{1}, \dots, \vec{y}_{n}], \qquad X = [\vec{x}_{1}, \dots, \vec{x}_{n}]
E = [\vec{\epsilon}_{1}, \dots, \vec{\epsilon}_{n}], \qquad D = [\vec{\delta}_{1}, \dots, \vec{\delta}_{n}]
\vec{\epsilon}_{i} = \frac{2}{n} g'(\vec{b}_{i}) \odot (\vec{z}_{i} - \vec{\zeta}_{i}), \qquad \vec{\delta}_{i} = f'(\vec{a}_{i}) \odot V^{T} \vec{\epsilon}_{i}$$

... where \odot means element-wise multiplication of two vectors; $g'(\vec{b})$ and $f'(\vec{a})$ are element-wise derivatives of the $g(\cdot)$ and $f(\cdot)$ nonlinearities.

Derivatives of the Nonlinearities



Outline

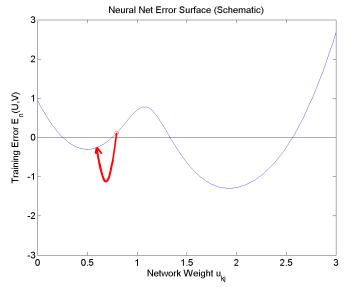
- Intro
- 2 Knowledge-Based Design
- 3 Error Metric
- 4 Gradient Descent
- Simulated Annealing
- 6 Example Dataset
- Conclusions

Simulated Annealing: How can we find the globally optimum U, V?

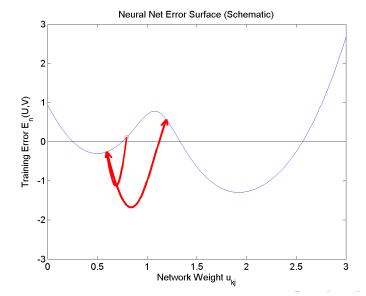
- Gradient descent finds a local optimum. The \hat{U} , \hat{V} you end up with depends on the U, V you started with.
- How can you find the global optimum of a non-convex error function?
- The answer: Add randomness to the search, in such a way that...

$$P(\text{reach global optimum}) \stackrel{t \to \infty}{\longrightarrow} 1$$

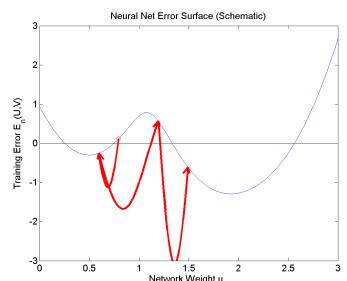
• Take a random step. If it goes downhill, do it.



- Take a random step. If it goes downhill, do it.
- If it goes uphill, SOMETIMES do it.



- Take a random step. If it goes downhill, do it.
- If it goes uphill, SOMETIMES do it.
- ullet Uphill steps become less probable as $t o \infty$



Simulated Annealing: Algorithm

FOR $t = 1 \text{ TO } \infty$, DO

- Set $\hat{U} = U + RANDOM$
- ② If your random step caused the error to decrease $(E_n(\hat{U}) < E_n(U))$, then set $U = \hat{U}$ (prefer to go downhill)
- Selse set $U = \hat{U}$ with probability P (... but sometimes go uphill!)
 - $P = \exp(-(E_n(\hat{U}) E_n(U)))$ /Temperature) (Small steps uphill are more probable than big steps uphill.)
 - ② Temperature = $T_{max}/\log(t+1)$ (Uphill steps become less probable as $t \to \infty$.)
- Whenever you reach a local optimum (*U* is better than both the preceding and following time steps), check to see if it's better than all preceding local optima; if so, remember it.

Convergence Properties of Simulated Annealing

(Hajek, 1985) proved that, if we start out in a "valley" that is separated from the global optimum by a "ridge" of height T_{max} , and if the temperature at time t is T(t), then simulated annealing converges in probability to the global optimum if

$$\sum_{t=1}^{\infty} \exp\left(-T_{max}/T(t)\right) = +\infty$$

For example, this condition is satisfied if

$$T(t) = T_{max}/\log(t+1)$$

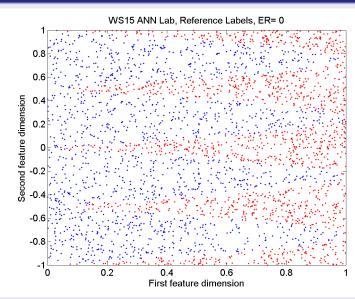
Real-World Randomness: Stochastic Gradient Descent (SGD)

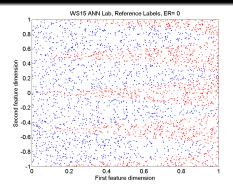
- SGD is the following algorithm. For t=1:T,
 - ① Randomly choose a small subset of your training data (a **minibatch**: strictly speaking, SGD is minibatch size of m=1, but practical minibatches are typically $m\sim 100$)
 - Perform a complete backprop iteration using the minibatch.
- Advantage of SGD over Simulated Annealing: computational complexity
 - Instead of introducing randomness with a random weight update $(\mathcal{O}\{n\})$, we introduce randomness by randomly sampling the dataset $(\mathcal{O}\{m\})$
 - Matters a lot when *n* is large
- Disadvantage of SGD over Simulated Annealing: It's not theoretically proven to converge to a global optimum
 - ... but it works in practice, if training dataset is big enough.

Outline

- 1 Intro
- 2 Knowledge-Based Design
- 3 Error Metric
- Gradient Descent
- Simulated Annealing
- 6 Example Dataset
- Conclusions

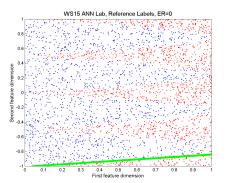
Here's the dataset





```
Knowledge-based design: set each row of U to be a line segment, u_0 + u_1x_1 + u_2x_2 = 0, on the decision boundary. u_0 is an arbitrary scale factor; u_0 = -20 makes the tanh work well. 

[x1,x2]=ginput(2); u_0=-20; % Arbitrary scale factor u_0=-10; % Arbitrary scale factor u_0=-10; u_0=-10;
```



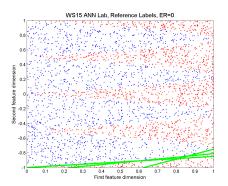
```
Check your math by plotting x_2 = -\frac{u_0}{u_2} - \frac{u_1}{u_2} x_1

nnplot(X,ZETA,ZETA,'Reference Labels',1);

hold on;

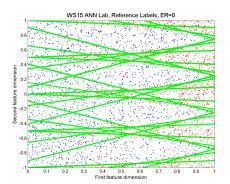
plot([0,1],-(u0/u(2))+[0,-u(1)/u(2)],'g-');

hold off;
```



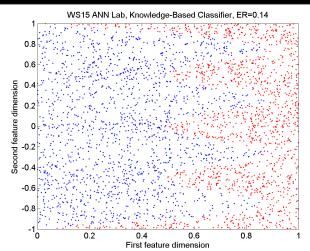
Here are 3 such segments, mapping out the lowest curve:

```
for m=1:3, plot([0 1],-U(m,1)/U(m,3)+[0,-U(m,2)/U(m,3)]); end
```

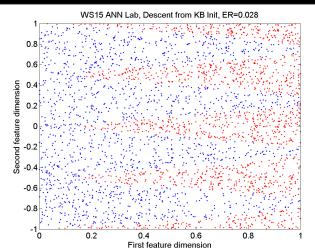


(1) Reflect through $x_2 = -0.75$, and (2) Shift upward:

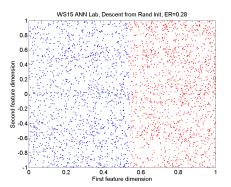
```
Ufoo = [U; U(:,1)-1.5*U(:,3),U(:,2),-U(:,3)];
Ubar = [Ufoo; Ufoo-[0.5*Ufoo(:,3),zeros(6,2)]];
U = [Ubar; Ubar-[Ubar(:,3),zeros(12,2)]];
```



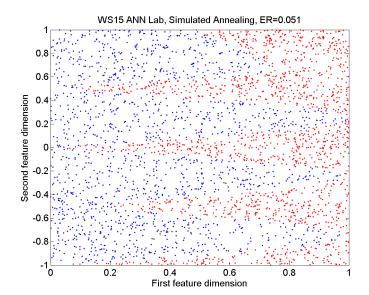
```
nnclassify.m: Error Rate = 14%
function [Z,Y]=nnclassify(X,U,V)
Y = tanh(U*[ones(1,n); X]);
Z = tanh(V*[ones(1,n); Y]);
```



nnbackprop.m: Error Rate = 2.8% function [EPSILON,DELTA]=nnbackprop(X,Y,Z,ZETA,V) EPSILON = 2* (1-Z.^2) .* (Z-ZETA); DELTA = (1-Y.^2) .* (V(:,2:(q+1)), * EPSILON);



```
But with random initialization: Error Rate = 28%
Urand = [0.02*randn(q,p+1)];
Vrand = [0.02*randn(r,q+1)];
[Uc,Vc] = nndescent(X,ZETA,Urand,Vrand,0.1,1000);
[Zc,Yc] = nnclassify(X,Uc,Vc);
```



```
nnanneal.m: Error Rate = 5.1\%
function [Es, Us, Vs] = nnanneal(X, ZETA, UO, VO, ETA, T)
for t=1:T.
 U1=U0+randn(q,p+1); V1=V0+randn(r,q+1);
 ER1 = sum(nnclassify(X,U1,V1).*ZETA<0)/n;</pre>
 if ER1 < ERO.
   U0=U1:V0=V1:ER0=ER1:
 else
   P = \exp(-(ER1-ER0)*\log(t+1)/ridge);
   if rand() < P,
    U0=U1; V0=V1; ER0=ER1;
```

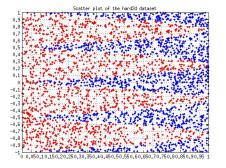


```
Here's one that Amit tried based on my mistaken early draft of the instructions for this lab. Error Rate: 28%

temperature=ridge/sqrt(t);

instead of the correct form,

temperature=ridge/log(t+1);
```



\dots and Amit solved it using Geometric Annealing. Error Rate: 0.67%

- Smaller random steps: $\Delta U \sim \mathcal{N}\left(0,1e-4\right)$ instead of $\mathcal{N}(0,1)$, and only one weight at a time instead of all weights at once
- Geometric annealing: temperature cools geometrically $(T(t) = \alpha T(t-1))$ rather than logarithmically $T(t) = c/\log(t+1)$

Simulated Annealing: More Results

Algorithm	c or α	t	Error Rate
Hajek Cooling	1	52356	5.1%
$(T = c/\log(t+1))$	10^{-4}	1800	0.70%
Geometric Annealing	0.7	500	0.43%
$T(t) = \alpha T(t-1)$	0.8	500	0.40%
	0.9	500	0.80%

More Comments on Simulated Annealing

- Gaussian random walk results in very large weights
 - I fought this using the mod operator, to map weights back to the range [-25, 25]
 - I suspect it matters, but I'm not sure
- Every time you reach a new low error,
 - Store it, and its associated weights, in case you never find it again, and
 - Print it on the screen (using disp and sprintf) so you can see how your code is doing
- Simulated annealing can take a really long time.

Outline

- 1 Intro
- 2 Knowledge-Based Design
- 3 Error Metric
- 4 Gradient Descent
- Simulated Annealing
- 6 Example Dataset
- Conclusions

Conclusions

- Back-prop.
 - You need to know how to do it.
 - ... but back-prop is only useful if you start from a good initial set of weights, or if you have good randomness
- Knowledge-based initialization
 - Sometimes, it helps if you understand what you're doing.
- Stochastic search.
 - Simulated annealing: guaranteed performance, high complexity.
 - Stochastic gradient descent: not guaranteed, but low complexity. Incidentally, I haven't tried it yet on hard2d.txt; if you try it, please tell me how it works.