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Final Exam: General Structure

About twice as long as a midterm (i.e., 8-10 problems with
1-3 parts each)

You’ll have 3 hours for the exam

The usual rules: no calculators or computers, two sheets of
handwritten notes, you will have two pages of formulas
provided on the exam, published by the Friday before the
exam.
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Final Exam: Topics Covered

17%: Material from exam 1 (phasors, Fourier series)

17%: Material from exam 2 (LSI systems, DTFT)

66%: Material from the last third of the course (DFT, Z
transform)
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Material from the last third of the course

DFT & Window Design

Circular Convolution

Z Transform & Inverse Z Transform

Notch Filters & Second-Order IIR
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DFT and Inverse DFT

X [k] =
N−1∑
n=0

x [n]e−j
2πkn
N

x [n] =
1

N

N−1∑
k=0

X [k]e j
2πkn
N
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DFT of a Cosine

x [n] = cos(ω0n)w [n] ↔ X (ωk) =
1

2
W (ωk −ω0) +

1

2
W (ωk +ω0)

where W (ω) is the transform of w [n]. For example, if w [n] is a
rectangular window, then

W (ω) = e−jω
N−1
2

sin(ωN/2)

sin(ω/2)
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Properties of the DFT

The DFT is periodic in frequency:

X [k + N] = X [k]

The inverse DFT is periodic in time: if x [n] is the inverse
DFT of X [k], then

x [n + N] = x [n]

Linearity:

ax1[n] + bx2[n] ↔ aX1[k] + bX2[k]

Samples of the DTFT: if x [n] is finite in time, with length
≤ N, then

X [k] = X (ωk), ωk =
2πk

N
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Properties of the DFT

Conjugate symmetric:

X [k] = X ∗[−k] = X ∗[N − k]

Frequency shift:

w [n]e j
2πk0n

N ↔ W [k − k0]

Circular time shift:

x [〈n − n0〉N ] ↔ e j
2πkn0

N X [k]
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DFT is actually a Fourier Series

Xk =
1

N

N−1∑
n=0

x [n]e−j
2πkn
N

X [k] =
N−1∑
n=0

x [n]e−j
2πkn
N

x [n] =
N−1∑
k=0

Xke
j 2πkn

N

x [n] =
1

N

N−1∑
k=0

X [k]e j
2πkn
N
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Circular Convolution

Y [k] = H[k]X [k]

y [n] = h[n] ~ x [n]

=
N−1∑
m=0

h [m] x [〈n −m〉N ]

=
N−1∑
m=0

x [m] h [〈n −m〉N ]
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Z Transform

X (z) =
∞∑

n=−∞
x [n]z−n
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System Function

y [n] = 0.2x [n + 3] + 0.3x [n + 2] + 0.5x [n + 1]

− 0.5x [n − 1]− 0.3x [n − 2]− 0.2x [n − 3]

H(z) =
Y (z)

X (z)
= 0.2z3 + 0.3z2 + 0.5z1− 0.5z−1− 0.3z−2− 0.2z−3
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The Zeros of H(z)

The roots, z1 and z2, are the values of z for which H(z) = 0.

But what does that mean? We know that for z = e jω, H(z) is
just the frequency response:

H(ω) = H(z)|z=e jω

but the roots do not have unit magnitude:

z1 = 1 + j =
√

2e jπ/4

z2 = 1− j =
√

2e−jπ/4

What it means is that, when ω = π
4 (so z = e jπ/4), then

|H(ω)| is as close to a zero as it can possibly get. So at that
frequency, |H(ω)| is as low as it can get.
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General form of an FIR filter

y [n] =
M∑
k=0

bkx [n − k]

This filter has an impulse response (h[n]) that is M + 1 samples
long.

The bk ’s are called feedforward coefficients, because they
feed x [n] forward into y [n].

General form of an IIR filter

N∑
`=0

a`y [n − `] =
M∑
k=0

bkx [n − k]

The a`’s are caled feedback coefficients, because they feed
y [n] back into itself.
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Transfer Function of a First-Order Filter

We can find the transfer function by taking the Z-transform of
each term in this equation equation:

y [n] = x [n] + bx [n − 1] + ay [n − 1],

Y (z) = X (z) + bz−1X (z) + az−1Y (z),

which we can solve to get

H(z) =
Y (z)

X (z)
=

1 + bz−1

1− az−1



Topics DFT Circular Convolution Z Transform Autoregressive Inverse Notch Resonators Summary

The Pole and Zero of H(z)

The pole, z = a, and zero, z = −b, are the values of z for
which H(z) =∞ and H(z) = 0, respectively.

But what does that mean? We know that for z = e jω, H(z) is
just the frequency response:

H(ω) = H(z)|z=e jω

but the pole and zero do not normally have unit magnitude.

What it means is that:

When ω = ∠(−b), then |H(ω)| is as close to a zero as it can
possibly get, so at that that frequency, |H(ω)| is as low as it
can get.
When ω = ∠a, then |H(ω)| is as close to a pole as it can
possibly get, so at that that frequency, |H(ω)| is as high as it
can get.
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Causality and Stability

A filter is causal if and only if the output, y [n], depends only
an current and past values of the input,
x [n], x [n − 1], x [n − 2], . . ..

A filter is stable if and only if every finite-valued input
generates a finite-valued output. A causal first-order IIR filter
is stable if and only if |a| < 1.
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Series Combination

The series combination of two systems looks like this:

y [n]H2(z)
v [n]

H1(z)x [n]

This means that

Y (z) = H2(z)V (z) = H2(z)H1(z)X (z)

and therefore

H(z) =
Y (z)

X (z)
= H1(z)H2(z)
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Parallel Combination

Parallel combination of two systems looks like this:

y [n]

H1(z)

H2(z)

x [n]

This means that

Y (z) = H1(z)X (z) + H2(z)X (z)

and therefore

H(z) =
Y (z)

X (z)
= H1(z) + H2(z)
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How to find the inverse Z transform

Any IIR filter H(z) can be written as. . .

denominator terms, each with this form:

G`(z) =
1

1− az−1
↔ g`[n] = anu[n],

each possibly multiplied by a numerator term, like this one:

Dk(z) = bkz
−k ↔ dk [n] = bkδ[n − k].
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Step #1: Numerator Terms

In general, if

G (z) =
1

A(z)

for any polynomial A(z), and

H(z) =

∑M
k=0 bkz

−k

A(z)

then
h[n] = b0g [n] + b1g [n − 1] + · · ·+ bMg [n −M]



Topics DFT Circular Convolution Z Transform Autoregressive Inverse Notch Resonators Summary

Step #2: Partial Fraction Expansion

Partial fraction expansion works like this:

1 Factor A(z):

G (z) =
1∏N

`=1 (1− p`z−1)

2 Assume that G (z) is the result of a parallel system
combination:

G (z) =
C1

1− p1z−1
+

C2

1− p2z−1
+ · · ·

3 Find the constants, C`, that make the equation true. Such
constants always exist, as long as none of the roots are
repeated (pk 6= p` for k 6= `).
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How to Implement a Notch Filter

To implement a notch filter at frequency ωc radians/sample, with
a bandwidth of − ln(a) radians/sample, you implement the
difference equation:

y [n] = x [n]−2 cos(ωc)x [n−1]+x [n−2]+2a cos(ωc)y [n−1]−a2y [n−2]

which gives you the notch filter

H(z) =
(1− r1z

−1)(1− r∗1 z
−1)

(1− p1z−1)(1− p∗1z
−1)

with the magnitude response:

|H(ω)| =


0 ωc

1√
2

ωc ± ln(a)

≈ 1 ω < ω + ln(a) or ω > ω − ln(a)
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A General Second-Order All-Pole Filter

Let’s construct a general second-order all-pole filter (leaving out
the zeros; they’re easy to add later).

H(z) =
1

(1− p1z−1)(1− p∗1z
−1)

=
1

1− (p1 + p∗1)z−1 + p1p∗1z
−2

The difference equation that implements this filter is

Y (z) = X (z) + (p1 + p∗1)z−1Y (z)− p1p
∗
1z
−2Y (z)

Which converts to

y [n] = x [n] + 2<(p1)y [n − 1]− |p1|2y [n − 2]
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Understanding the Impulse Response of a Second-Order IIR

In order to understand the impulse response, maybe we should
invent some more variables. Let’s say that

p1 = e−σ1+jω1 , p∗1 = e−σ1−jω1

where σ1 is the half-bandwidth of the pole, and ω1 is its center
frequency. The partial fraction expansion gave us the constant

C1 =
p1

p1 − p∗1
=

p1
e−σ1 (e jω1 − e−jω1)

=
e jω1

2j sin(ω1)

Therefore

h[n] =
1

sin(ω1)
e−σ1n sin(ω1(n + 1))u[n]
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Example: Ideal Resonator

Putting p1 = e jω1 into the general form, we find that the impulse
response of this filter is

h[n] =
1

sin(ω1)
sin(ω1(n + 1))u[n]

This is called an “ideal resonator” because it keeps ringing forever.
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Bandwidth

There are three frequencies that really matter:

1 Right at the pole, at ω = ω1, we have

|e jω − p1| ≈ σ1

2 At ± half a bandwidth, ω = ω1 ± σ1, we have

|e jω − p1| ≈ | − σ1 ∓ jσ1| = σ1
√

2
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3dB Bandwidth

The 3dB bandwidth of an all-pole filter is the width of the
peak, measured at a level 1/

√
2 relative to its peak.

σ1 is half the bandwidth.
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