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Final Exam: General Structure

@ About twice as long as a midterm (i.e., 8-10 problems with
1-3 parts each)

@ You'll have 3 hours for the exam
@ The usual rules: no calculators or computers, two sheets of
handwritten notes, you will have two pages of formulas

provided on the exam, published by the Friday before the
exam.




Topics
ceo

Final Exam: Topics Covered

@ 17%: Material from exam 1 (phasors, Fourier series)
@ 17%: Material from exam 2 (LSl systems, DTFT)

@ 66%: Material from the last third of the course (DFT, Z
transform)
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Material from the last third of the course

DFT & Window Design

Circular Convolution

Z Transform & Inverse Z Transform
Notch Filters & Second-Order IIR
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DFT and Inverse DFT

N-1
:2mkn

X[kl = x[nle ™/ "w"

n=0

1 = -k
x[n] = 5 > X[k
k=0
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DFT of a Cosine

1 1
x[n] = cos(wom)w[n] <+ X(wg) = 5 W (wk — wo) + 5 W (wk +wo)
where W(w) is the transform of w[n]. For example, if w[n] is a

rectangular window, then

el sin(wN/2)
W)= > 02
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Properties of the DFT

@ The DFT is periodic in frequency:
X[k + N] = X[K]

@ The inverse DFT is periodic in time: if x[n] is the inverse
DFT of X[k], then

x[n+ N] = x[n]
o Linearity:
axi[n] + bxo[n] < aXilk] + bX2[k]
@ Samples of the DTFT: if x[n] is finite in time, with length

< N, then

2wk
)([k] = )((Ujk), Wy = ‘70‘
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Properties of the DFT

o Conjugate symmetric:
X[k] = X*[—k] = X*[N — K]
@ Frequency shift:
.2mkgn
wlnle¢ v <« Wk — ko]
e Circular time shift:

2mkng

v X[K]

x[(n—no)n] <+ €
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DFT is actually a Fourier Series

1= 2mk
Xk = m Z x[n]e 7w
n=0
N-1

XKl =Y x[n]e

n=0

x[n] = ZXk s

N—
x[n] = Z X[k]e/™n
k

27rkn
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Circular Convolution

Y[kl = H[K]X[K]
y[n] = hln] ® x[n]

N—1
=Y hmlx[(n—m)]

0
1

=23

= 3" x[mlhl(n — m)]
0

3
Il
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Z Transform

X(z) = Z x[n]z™"

n=—0o0o
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System Function

y[n] = 0.2x[n + 3] + 0.3x[n + 2] 4+ 0.5x[n + 1]
— 0.5x[n — 1] — 0.3x[n — 2] — 0.2x[n — 3]

Y
H(z) = (2) _ 0,3 4032240521 0521 -0322-027"3
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The Zeros of H(z)

@ The roots, z; and z, are the values of z for which H(z) = 0.

o But what does that mean? We know that for z = &/, H(z) is
just the frequency response:

H(w) = H(2)|,=eiw
but the roots do not have unit magnitude:

721 =14j =24
22:].—j:\/§efj7r/4

o What it means is that, when w = 7 (so z = e/™/%), then

|H(w)| is as close to a zero as it can possibly get. So at that
frequency, |H(w)| is as low as it can get.



Autoregressive
.

Outline

© Autoregressive Filters



General form of an FIR filter
M
yln] =" bix[n— K]
k=0

This filter has an impulse response (h[n]) that is M + 1 samples
long.
@ The by's are called feedforward coefficients, because they
feed x[n] forward into y[n].

General form of an |IR filter

N M
D ayln— =) bix[n—K
=0 k=0

@ The a;'s are caled feedback coefficients, because they feed
y[n] back into itself.
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Transfer Function of a First-Order Filter

We can find the transfer function by taking the Z-transform of
each term in this equation equation:

yln] = x[n] + bx[n — 1] + ay[n — 1],

Y(z) = X(2) + bz X(2) + az 1Y (z),

which we can solve to get

Y(z) 1+bz!

H(z) = X(z) 1—az'l
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The Pole and Zero of H(z)

@ The pole, z = a, and zero, z = —b, are the values of z for
which H(z) = co and H(z) = 0, respectively.

@ But what does that mean? We know that for z = e/, H(z) is
just the frequency response:

H(w) = H(2)|;=e

but the pole and zero do not normally have unit magnitude.
@ What it means is that:

o When w = Z(—b), then |H(w)| is as close to a zero as it can
possibly get, so at that that frequency, |H(w)]| is as low as it
can get.

o When w = Za, then |H(w)| is as close to a pole as it can
possibly get, so at that that frequency, |H(w)| is as high as it
can get.
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Causality and Stability

e A filter is causal if and only if the output, y[n], depends only
an current and past values of the input,
x[n],x[n —1],x[n—2],....

o A filter is stable if and only if every finite-valued input
generates a finite-valued output. A causal first-order IIR filter
is stable if and only if |a| < 1.
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Series Combination

The series combination of two systems looks like this:

v [=n]

x[n] o—Hy(2) Ha(z)— y[n]

This means that
Y(z) = Ha(2)V(z) = Ha(2)H1(2) X(2)
and therefore

Hi(z)Ha(z)
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Parallel Combination

Parallel combination of two systems looks like this:

x[n] ylnl

This means that
Y(z) = Hi(2)X(2) + H2(2)X(2)

and therefore
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How to find the inverse Z transform

Any IIR filter H(z) can be written as. ..

@ denominator terms, each with this form:

o)== & all=a"uli],

@ each possibly multiplied by a numerator term, like this one:

Di(2) = bz % di[n] = bkd[n — k].
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Step #1: Numerator Terms

In general, if

for any polynomial A(z), and

m 7k
H(z) = ij}’(i’g

then
h[n] = bog[n] + big[n — 1] + - + bug[n — M]
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Step #2: Partial Fraction Expansion

Partial fraction expansion works like this:

@ Factor A(z):
1

T -z

@ Assume that G(z) is the result of a parallel system
combination:

G(2)

G G

G -
(@) 1—ppzt 1 p2z~1 *

© Find the constants, Cy, that make the equation true. Such
constants always exist, as long as none of the roots are

repeated (px # py for k # £).
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How to Implement a Notch Filter

To implement a notch filter at frequency w, radians/sample, with
a bandwidth of —In(a) radians/sample, you implement the
difference equation:

y[n] = x[n]—=2 cos(we )x[n—1]4x[n—2]+2a cos(wc )y [n—1]—a’y[n—2]
which gives you the notch filter

(1-nz1)(1- rfz_l)
(1-p1z7t)(1 - piz 1)

with the magnitude response:

H(z) =

0 We

|H(w)| = % we £ In(a)

~1 w<w+In(a) orw>w—1In(a)



Resonators
°

Outline

e Resonators



Resonators
©0000

A General Second-Order All-Pole Filter

Let's construct a general second-order all-pole filter (leaving out
the zeros; they're easy to add later).

1 1

H(z) = =
(=) (L=pz )1 =piz7") 1=(pr+p)zt+prpiz2

The difference equation that implements this filter is
Y(z) = X(z) + (p1 + P?[)Z*1 Y(z) - plpi“z’2 Y(2)
Which converts to

ylnl = x[n] + 2R(p1)y[n — 1] — |p1Py[n — 2]
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Understanding the Impulse Response of a Second-Order IIR

In order to understand the impulse response, maybe we should
invent some more variables. Let's say that

p1 = e 1w pi = e 1w
)
where o7 is the half-bandwidth of the pole, and w; is its center

frequency. The partial fraction expansion gave us the constant

__p P1 _ el
p1—p; e (e —e ) 2fsin(wi)

G

Therefore

h[n] = e “sin(wi(n + 1))uln]

sin(w1)
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Example: ldeal Resonator

Putting p; = €1 into the general form, we find that the impulse
response of this filter is

h[n] = sin(wi(n+ 1))u[n]

1
sin(w1)

This is called an “ideal resonator” because it keeps ringing forever.



Resonators
000®0

Bandwidth

There are three frequencies that really matter:

© Right at the pole, at w = wi, we have
| — pa| ~ o
@ At + half a bandwidth, w = w1 + o1, we have

|/ — p1| ~ | — 01 F jo1| = 01V2
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3dB Bandwidth

@ The 3dB bandwidth of an all-pole filter is the width of the
peak, measured at a level l/ﬂ relative to its peak.

@ o1 is half the bandwidth.
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