

Final Exam Review

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

Kロトメ部トメミトメミト ミニのQC

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- [Circular Convolution](#page-11-0)
- [Z Transform](#page-14-0)
- [Autoregressive Filters](#page-18-0)
- [Inverse Z Transform](#page-23-0)
- [Notch Filters](#page-29-0)
- [Resonators](#page-31-0)

[DFT](#page-6-0)

- 3 [Circular Convolution](#page-11-0)
- 4 [Z Transform](#page-14-0)
- 5 [Autoregressive Filters](#page-18-0)
- 6 [Inverse Z Transform](#page-23-0)
- 7 [Notch Filters](#page-29-0)

[Resonators](#page-31-0)

[Summary](#page-37-0)

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) ൈറ 0000 000000 000000 Final Exam: General Structure

- About twice as long as a midterm (i.e., 8-10 problems with 1-3 parts each)
- You'll have 3 hours for the exam
- The usual rules: no calculators or computers, two sheets of handwritten notes, you will have two pages of formulas provided on the exam, published by the Friday before the exam.

KORK ERKER ADAM ADA

- 17%: Material from exam 1 (phasors, Fourier series)
- 17%: Material from exam 2 (LSI systems, DTFT)
- 66%: Material from the last third of the course (DFT, Z transform)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0)

KORK ERKER ADA ADA KORA

Material from the last third of the course

- **DFT & Window Design**
- **Circular Convolution**
- 7 Transform & Inverse 7 Transform
- Notch Filters & Second-Order IIR

2 [DFT](#page-6-0)

3 [Circular Convolution](#page-11-0)

4 [Z Transform](#page-14-0)

- 5 [Autoregressive Filters](#page-18-0)
- 6 [Inverse Z Transform](#page-23-0)
- 7 [Notch Filters](#page-29-0)

[Resonators](#page-31-0)

[Summary](#page-37-0)

$$
X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}
$$

$$
x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k]e^{j\frac{2\pi kn}{N}}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
x[n] = \cos(\omega_0 n) w[n] \leftrightarrow X(\omega_k) = \frac{1}{2} W(\omega_k - \omega_0) + \frac{1}{2} W(\omega_k + \omega_0)
$$

where $W(\omega)$ is the transform of w[n]. For example, if w[n] is a rectangular window, then

$$
W(\omega) = e^{-j\omega \frac{N-1}{2}} \frac{\sin(\omega N/2)}{\sin(\omega/2)}
$$

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) 0000 ററൈ 000 0000 000000 000000 Properties of the DFT

• The DFT is periodic in frequency:

$$
X[k+N] = X[k]
$$

• The inverse DFT is periodic in time: if $x[n]$ is the inverse DFT of $X[k]$, then

$$
x[n+N] = x[n]
$$

• Linearity:

$$
ax_1[n] + bx_2[n] \leftrightarrow aX_1[k] + bX_2[k]
$$

• Samples of the DTFT: if $x[n]$ is finite in time, with length $< N$, then

$$
X[k] = X(\omega_k), \quad \omega_k = \frac{2\pi k}{N}
$$

Conjugate symmetric:

$$
X[k] = X^*[-k] = X^*[N-k]
$$

• Frequency shift:

$$
w[n]e^{j\frac{2\pi k_0 n}{N}} \leftrightarrow W[k-k_0]
$$

• Circular time shift:

$$
X\left[\langle n-n_0\rangle_N\right] \quad \leftrightarrow \quad e^{j\frac{2\pi kn_0}{N}}X[k]
$$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

2 [DFT](#page-6-0)

3 [Circular Convolution](#page-11-0)

4 [Z Transform](#page-14-0)

- 5 [Autoregressive Filters](#page-18-0)
- 6 [Inverse Z Transform](#page-23-0)
- 7 [Notch Filters](#page-29-0)

[Resonators](#page-31-0)

[Summary](#page-37-0)

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) DFT is actually a Fourier Series

$$
X_{k} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}
$$

$$
X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}
$$

$$
x[n] = \sum_{k=0}^{N-1} X_k e^{j\frac{2\pi kn}{N}}
$$

$$
x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi kn}{N}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
Y[k] = H[k]X[k]
$$

\n
$$
y[n] = h[n] \otimes x[n]
$$

\n
$$
= \sum_{m=0}^{N-1} h[m]x[(n-m)N]
$$

\n
$$
= \sum_{m=0}^{N-1} x[m]h[(n-m)N]
$$

Kロト K個 K K ミト K ミト 「 ミー の R (^

2 [DFT](#page-6-0)

3 [Circular Convolution](#page-11-0)

4 [Z Transform](#page-14-0)

- 5 [Autoregressive Filters](#page-18-0)
- 6 [Inverse Z Transform](#page-23-0)

7 [Notch Filters](#page-29-0)

[Resonators](#page-31-0)

[Summary](#page-37-0)

$$
X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

$$
y[n] = 0.2x[n+3] + 0.3x[n+2] + 0.5x[n+1] - 0.5x[n-1] - 0.3x[n-2] - 0.2x[n-3]
$$

$$
H(z) = \frac{Y(z)}{X(z)} = 0.2z^3 + 0.3z^2 + 0.5z^1 - 0.5z^{-1} - 0.3z^{-2} - 0.2z^{-3}
$$

Kロト K個 K K ミト K ミト 「 ミー の R (^

[Topics](#page-2-0) [DFT](#page-6-0) Circular Convolution **Z Transform** [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) 0000 00000 000 0000 00000 000000 \circ 000000 \circ The Zeros of $H(z)$

- The roots, z_1 and z_2 , are the values of z for which $H(z) = 0$.
- But what does that mean? We know that for $z=e^{j\omega}$, $H(z)$ is just the frequency response:

$$
H(\omega)=H(z)|_{z=e^{j\omega}}
$$

but the roots do not have unit magnitude:

$$
z_1 = 1 + j = \sqrt{2}e^{j\pi/4}
$$

$$
z_2 = 1 - j = \sqrt{2}e^{-j\pi/4}
$$

What it means is that, when $\omega = \frac{\pi}{4}$ $\frac{\pi}{4}$ (so $z=e^{j\pi/4}$), then $|H(\omega)|$ is as close to a zero as it can possibly get. So at that frequency, $|H(\omega)|$ is as low as it can get.

KORKARYKERKER POLO

[DFT](#page-6-0)

3 [Circular Convolution](#page-11-0)

4 [Z Transform](#page-14-0)

- 5 [Autoregressive Filters](#page-18-0)
- 6 [Inverse Z Transform](#page-23-0)

7 [Notch Filters](#page-29-0)

[Resonators](#page-31-0)

[Summary](#page-37-0)

General form of an FIR filter

$$
y[n] = \sum_{k=0}^{M} b_k x[n-k]
$$

This filter has an impulse response $(h[n])$ that is $M + 1$ samples long.

 \bullet The b_k 's are called **feedforward** coefficients, because they feed $x[n]$ forward into $y[n]$.

General form of an IIR filter

$$
\sum_{\ell=0}^N a_\ell y[n-\ell] = \sum_{k=0}^M b_k x[n-k]
$$

The a_{ℓ} 's are caled **feedback** coefficients, because they feed $y[n]$ back into itself.

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) Transfer Function of a First-Order Filter

We can find the transfer function by taking the Z-transform of each term in this equation equation:

$$
y[n] = x[n] + bx[n-1] + ay[n-1],
$$

\n
$$
Y(z) = X(z) + bz^{-1}X(z) + az^{-1}Y(z),
$$

which we can solve to get

$$
H(z) = \frac{Y(z)}{X(z)} = \frac{1 + bz^{-1}}{1 - az^{-1}}
$$

KORK ERKER ADA ADA KORA

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) 0000 00000 000 0000 ററൈ 000000 \circ 000000 \circ The Pole and Zero of $H(z)$

- The pole, $z = a$, and zero, $z = -b$, are the values of z for which $H(z) = \infty$ and $H(z) = 0$, respectively.
- But what does that mean? We know that for $z=e^{j\omega}$, $H(z)$ is just the frequency response:

$$
H(\omega)=H(z)|_{z=e^{j\omega}}
$$

but the pole and zero do not normally have unit magnitude.

- What it means is that:
	- \bullet When $\omega = \angle (-b)$, then $|H(\omega)|$ is as close to a zero as it can possibly get, so at that that frequency, $|H(\omega)|$ is as low as it can get.
	- When $\omega = \angle a$, then $|H(\omega)|$ is as close to a pole as it can possibly get, so at that that frequency, $|H(\omega)|$ is as high as it can get.

- A filter is **causal** if and only if the output, $y[n]$, depends only an current and past values of the input, $x[n], x[n-1], x[n-2], \ldots$
- A filter is stable if and only if every finite-valued input generates a finite-valued output. A causal first-order IIR filter is stable if and only if $|a| < 1$.

KORKAR KERKER ST VOOR

[DFT](#page-6-0).

3 [Circular Convolution](#page-11-0)

4 [Z Transform](#page-14-0)

- 5 [Autoregressive Filters](#page-18-0)
- 6 [Inverse Z Transform](#page-23-0)
- 7 [Notch Filters](#page-29-0)

[Resonators](#page-31-0)

[Summary](#page-37-0)

The series combination of two systems looks like this:

$$
x[n] \leftrightarrow H_1(z) \xrightarrow{v[n]} H_2(z) \to y[n]
$$

This means that

$$
Y(z) = H_2(z)V(z) = H_2(z)H_1(z)X(z)
$$

and therefore

$$
H(z)=\frac{Y(z)}{X(z)}=H_1(z)H_2(z)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) Parallel Combination

Parallel combination of two systems looks like this:

This means that

$$
Y(z) = H_1(z)X(z) + H_2(z)X(z)
$$

and therefore

$$
H(z) = \frac{Y(z)}{X(z)} = H_1(z) + H_2(z)
$$

イロト 不優 トイ磨 トイ磨 トー 磨っ

 2990

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) ററൈറെ How to find the inverse Z transform

Any IIR filter $H(z)$ can be written as...

• denominator terms, each with this form:

$$
G_{\ell}(z)=\frac{1}{1-az^{-1}} \quad \leftrightarrow \quad g_{\ell}[n]=a^n u[n],
$$

• each possibly multiplied by a numerator term, like this one:

$$
D_k(z) = b_k z^{-k} \quad \leftrightarrow \quad d_k[n] = b_k \delta[n-k].
$$

KORK ERKER ADAM ADA

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) Step $#1$: Numerator Terms

In general, if

$$
G(z)=\frac{1}{A(z)}
$$

for any polynomial $A(z)$, and

$$
H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{A(z)}
$$

then

$$
h[n] = b_0g[n] + b_1g[n-1] + \cdots + b_Mg[n-M]
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) oooo 00000 0000 00000 ററററെ⊕ \circ 000000 \circ Step #2: Partial Fraction Expansion

Partial fraction expansion works like this:

- \bullet Factor $A(z)$: $G(z) = \frac{1}{\Box N - (1)}$ $\prod_{\ell=1}^N (1 - p_{\ell} z^{-1})$
- **2** Assume that $G(z)$ is the result of a parallel system combination:

$$
G(z) = \frac{C_1}{1 - p_1 z^{-1}} + \frac{C_2}{1 - p_2 z^{-1}} + \cdots
$$

KORKARYKERKER POLO

 $\bullet\,$ Find the constants, \mathcal{C}_ℓ , that make the equation true. Such constants always exist, as long as none of the roots are repeated $(p_k \neq p_\ell$ for $k \neq \ell$).

[DFT](#page-6-0).

3 [Circular Convolution](#page-11-0)

4 [Z Transform](#page-14-0)

- 5 [Autoregressive Filters](#page-18-0)
- 6 [Inverse Z Transform](#page-23-0)
- 7 [Notch Filters](#page-29-0)

[Resonators](#page-31-0)

[Summary](#page-37-0)

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) oooo 0000 000000 \circ 000000

How to Implement a Notch Filter

To implement a notch filter at frequency ω_c radians/sample, with a bandwidth of $-\ln(a)$ radians/sample, you implement the difference equation:

 $y[n] = x[n] - 2\cos(\omega_c) x[n-1] + x[n-2] + 2a\cos(\omega_c) y[n-1] - a^2 y[n-2]$

which gives you the notch filter

$$
H(z) = \frac{(1 - r_1 z^{-1})(1 - r_1^* z^{-1})}{(1 - p_1 z^{-1})(1 - p_1^* z^{-1})}
$$

with the magnitude response:

$$
|H(\omega)| = \begin{cases} 0 & \omega_c \\ \frac{1}{\sqrt{2}} & \omega_c \pm \ln(a) \\ \approx 1 & \omega < \omega + \ln(a) \text{ or } \omega > \omega - \ln(a) \end{cases}
$$

KORKARYKERKER POLO

[DFT](#page-6-0)

[Circular Convolution](#page-11-0)

[Z Transform](#page-14-0)

- [Autoregressive Filters](#page-18-0)
- [Inverse Z Transform](#page-23-0)
- [Notch Filters](#page-29-0)

[Resonators](#page-31-0)

A General Second-Order All-Pole Filter

Let's construct a general second-order all-pole filter (leaving out the zeros; they're easy to add later).

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0)

 000000

 000000

KORK EXTERNE PROVIDE

$$
H(z)=\frac{1}{(1-\rho_1 z^{-1})(1-\rho_1^* z^{-1})}=\frac{1}{1-(\rho_1+\rho_1^*)z^{-1}+\rho_1\rho_1^* z^{-2}}
$$

The difference equation that implements this filter is

$$
Y(z) = X(z) + (p_1 + p_1^*)z^{-1}Y(z) - p_1p_1^*z^{-2}Y(z)
$$

Which converts to

oooo

$$
y[n] = x[n] + 2\Re(p_1)y[n-1] - |p_1|^2y[n-2]
$$

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) Re<mark>sonators</mark> [Summary](#page-37-0)
೧೦೦೦ ೧೦೦೦೦ ೧೦೦ ೧೧೦೦ ೧೦೦೦೧ ೧೦೦೦೦ ೧೦೦೦೧೧ ೧೦ ೧**೧೯೧೦**೦ ೧೧ oooo 00000 0000 000000 റാ⊕റററ Understanding the Impulse Response of a Second-Order IIR

In order to **understand** the impulse response, maybe we should invent some more variables. Let's say that

$$
p_1 = e^{-\sigma_1 + j\omega_1}, \quad p_1^* = e^{-\sigma_1 - j\omega_1}
$$

where σ_1 is the half-bandwidth of the pole, and ω_1 is its center frequency. The partial fraction expansion gave us the constant

$$
C_1 = \frac{p_1}{p_1 - p_1^*} = \frac{p_1}{e^{-\sigma_1} (e^{j\omega_1} - e^{-j\omega_1})} = \frac{e^{j\omega_1}}{2j \sin(\omega_1)}
$$

Therefore

$$
h[n] = \frac{1}{\sin(\omega_1)} e^{-\sigma_1 n} \sin(\omega_1(n+1)) u[n]
$$

KORKARYKERKER OQO

[Topics](#page-2-0) [DFT](#page-6-0) [Circular Convolution](#page-11-0) [Z Transform](#page-14-0) [Autoregressive](#page-18-0) [Inverse](#page-23-0) [Notch](#page-29-0) [Resonators](#page-31-0) [Summary](#page-37-0) 000000 Example: Ideal Resonator

Putting $p_1=e^{j\omega_1}$ into the general form, we find that the impulse response of this filter is

$$
h[n] = \frac{1}{\sin(\omega_1)} \sin(\omega_1(n+1))u[n]
$$

This is called an "ideal resonator" because it keeps ringing forever.

KORK ERKER ADAM ADA

There are three frequencies that really matter:

1 Right at the pole, at $\omega = \omega_1$, we have

$$
|e^{j\omega}-p_1|\approx \sigma_1
$$

2 At \pm half a bandwidth, $\omega = \omega_1 \pm \sigma_1$, we have

$$
|e^{j\omega}-p_1|\approx |-\sigma_1\mp j\sigma_1|=\sigma_1\sqrt{2}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The 3dB bandwidth of an all-pole filter is the width of the peak, measured at a level $1/\surd 2$ relative to its peak.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \bullet σ_1 is half the bandwidth.

[DFT](#page-6-0)

[Circular Convolution](#page-11-0)

[Z Transform](#page-14-0)

- [Autoregressive Filters](#page-18-0)
- [Inverse Z Transform](#page-23-0)
- [Notch Filters](#page-29-0)

[Resonators](#page-31-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- **DFT & Window Design**
- **Circular Convolution**
- Z Transform & Inverse Z Transform
- Notch Filters & Second-Order IIR