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Phasors

x(t) = Acos (27ft 4 0)
— % {Zej27rft}

1 , 1 .
— EZ>o<e—127rft + §Zej27rft

where .
z = Ael?
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Adding Phasors

How do you add
z(t) = Acos (2rft + 0) + B cos (27ft + ¢)?
Answer:

z = (Acosf + Bcos ¢) + j(Asinf + Bsin¢)

z(t) =R {zejzﬂft}
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Two-sided spectrum

The spectrum of x(t) is the set of frequencies, and their
associated phasors,

Spectrum (x(t)) = {(f-n,a-n),- .-, (fo,a0), .-, (fn,an)}

such that
N

x(t)= ) aelmh

k=—N
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Spectrum Plots

The spectrum plot of a periodic signal is a plot with
@ frequency on the X-axis,
@ showing a vertical spike at each frequency component,

@ each of which is labeled with the corresponding phasor.
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Example: Cosine w/Amplitude 3, Phase 7/4

Xx(t) = 3cos(2n800t + r/4)

0.0000 0.0005 0.0010 00015 0.0020 0.0025
t(sec)

Spectrum of x(t)
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Property #1: Scaling

Suppose we have a signal

Suppose we scale it by a factor of G:

y(t) = Gx(t)
That just means that we scale each of the coefficients by G:

N

y(t) = 3 (Gay) it

k=—N
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Property #2: Adding a constant

Suppose we have a signal

N

X(t): Z ake’?”fkt

k=—N
Suppose we add a constant, C:
y(£) = x(8)+ €
That just means that we add that constant to ag:

y(t) = (ao + C) + Z akej27rfkt
k#0
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Property #3: Adding two signals

Suppose we have two signals:

N
x(t) =Y a2t
n=—N
M
2 f! t
y(t)= > ape®n
m=—M

and we add them together:

2(t) = x(t) + y(t) = Y axel?™ht
k

where, if a frequency fx comes from both x(t) and y(t), then we
have to do phasor addition:

Iffk:f,;:f,x then ak:a'n—kax,



Spectrum
000000000

Property #4: Time shift

Suppose we have a signal

N

x(t)= ) aelmh

k=—N

and we want to time shift it by 7 seconds:

y(t) = x(t —7)

Time shift corresponds to a phase shift of each spectral

component:
N

y(t) = Z <ake_j2”f”) o2t

k=—N
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Property #5: Frequency shift

Suppose we have a signal

N

x(t) = Z a2 e/2mft

k=—N

and we want to shift it in frequency by some constant overall shift,

F:
N

y(t): Z akej27r(fk+F)t

k=—N

Frequency shift corresponds to amplitude modulation (multiplying
it by a complex exponential at the carrier frequency F):

y(t) = x(t)e?"
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Property #6: Differentiation

Suppose we have a signal

N
x(t) = Z ayel?mfit
k=—N
and we want to differentiate it:
dx
t) = —
y(t) ™

Differentiation corresponds to scaling each spectral coefficient by

J2miy:
N

y(t)= > (jorfiay) &

k=—N
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Fourier Series

e Analysis (finding the spectrum, given the signal):

1 [To .
Xy = / x(t)eJ2mkt/ Togy
To

e Synthesis (finding the signal, given the spectrum):

X(t Z X e]27rkt/T0

k=—o0
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Discrete-Time Fourier Series

e Analysis (finding the spectrum, given the signal):

No—1
1 0

X, — nle—i2mkn/No
K= N ; [n]

e Synthesis (finding the signal, given the spectrum):

x[n] _ ZxkejZWkn/No
k

where the sum is over any set of Ny consecutive harmonics.
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Spectral Properties of Fourier Series

@ Scaling:
y(t) = Gx(t) & Yk = GXi

o Add a Constant:

Xo+C k=0

t)=x(t)+ C & Yy =
y(t) = x(1) k {Xk otherwise

e Add Signals: Suppose that x(t) and y(t) have the same
fundamental frequency, then

z(t) = x(t) + y(t) & Zk = Xk + Y
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Spectral Properties of Fourier Series

o Time Shift: Shifting to the right, in time, by 7 seconds:
y(t) = x(t — 7) & Yj = age J2kho7
e Frequency Shift: Shifting upward in frequency by F Hertz:
y(t) = x(t)e? ¥t o v, = X _qg

o Differentiation:

d
y(t) = cT); & Yi = j2mkFoXi
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How to sample a continuous-time signal

Suppose you have some continuous-time signal, x(t), and you'd
like to sample it, in order to store the sample values in a computer.
The samples are collected once every T = ,_-is seconds:

x[n] = x(t = nTs)
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Spectrum Plot of a Discrete-Time Periodic Signal

The spectrum plot of a discrete-time periodic signal is a regular
spectrum plot, but with the X-axis relabeled. Instead of frequency

in Hertz= [cycles
second

] we use

_ radians cycles }
[radlans] _ 2m { cycle } f [second

sample F. [samples}
second
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Example: Cosine w/Amplitude 3, Phase 7/4

X(t) = 3cos(n/4 + 2n800n/8000) = 3cos(n/4 + nn/5)

| L NERED aanl
1T T

00 25 5.0 75

100
n (samples)

Spectrum of x[n]

5o (3/2 )e*/nm 3/2)e/n/4 (3/2 )e*/nm 3/2)e/n/4 (3/2 )e*/nm 3/2)e/n/4
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Aliasing

@ A sampled sinusoid can be reconstructed perfectly if the
Nyquist criterion is met, f < %
o If the Nyquist criterion is violated, then:
o If % < f < Fs, then it will be aliased to

f;';:Fs_f

z,=2z"

i.e., the sign of all sines will be reversed.
o If << 355, then it will be aliased to

f:azf_Fs

Z, =2
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Example: Cosine w/Amplitude 3, Phase 7/4

x(t) = 3cos(n/4 + 2m4800n/8000) = 3cos(n/4 + 6nn/5) = 3cos(—mn/4 + 4nn/5)
J i i H

00 25 5.0 75

100
n (samples)

Spectrum of x[n]

(3/2)e~/m4 3/2)eim* (3/2)e~m4 3/2)eim*

-2n -w —2n+w 2n-w w 2n
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Interpolation

Interpolation is the general method for reconstructing a
continuous-time signal from its samples. The formula is:

o0

y(t)= Y ylnlp(t - nT;)

n=—oo
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Interpolation kernels

@ Piece-wise constant interpolation = interpolate using a
rectangle

@ Piece-wise linear interpolation = interpolate using a triangle

@ ldeal interpolation = interpolate using a sinc
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Rectangular pulses

For example, suppose that the pulse is just a rectangle,

1 —DL<e<ts
p(t) = 2 -2
0 otherwise

Rectangular Pulse

08

06

04

00
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Rectangular pulses = Piece-wise constant interpolation

The result is a piece-wise constant interpolation of the digital
signal:

Discrete-time signal x[n]

o] [ ] ]
N L]

o 2 4 6 8 10 12 14
Time (samples)

x[n] interpolated using a rectangular pulse




Sampling
0000000008000

Triangular pulses

The rectangular pulse has the disadvantage that y(t) is
discontinuous. We can eliminate the discontinuities by using a
triangular pulse:

1 Te<t<Ts
p(f)Z{O Ts

otherwise

Triangular Pulse

08

06

04
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Triangular pulses = Piece-wise linear interpolation

The result is a piece-wise linear interpolation of the digital signal:

Discrete-time signal x[n]

- [ { [ [

0.0

e l J J J

0 2 4 6 8 10 12 14
Time (samples)

x[n] interpolated using a triangular pulse

ST T T
T N

00 02 04 06 0.8 10
Time (ms)
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Sinc pulses

. . . . FS
If a signal has all its energy at frequencies below Nyquist (f < 5),
then it can be perfectly reconstructed using sinc interpolation:

_sin(nt/Ts)
=T

Sinc Pulse, p(t) = sin(nTsm)/nTsn
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06

04
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Sinc pulse = ideal bandlimited interpolation

. . . . F,
If a signal has all its energy at frequencies below Nyquist (f < 5),
then it can be perfectly reconstructed using sinc interpolation:

Discrete-time signal x[n]

" [ [ [ [

0.0

e l l J l

o 2 4 6 8 10 12 14
Time (samples)

xIn] interpolated using a sinc pulse

S AT AN
NuP% [~

0.0 02 04 06 08 10
Time (ms)
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