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Review: Poles and Zeros

A first-order autoregressive filter,

y [n] = x [n] + bx [n − 1] + ay [n − 1],

has the impulse response and transfer function

h[n] = anu[n] + ban−1u[n − 1]↔ H(z) =
1 + bz−1

1− az−1
,

where a is called the pole of the filter, and −b is called its zero.
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Causality and Stability

A filter is causal if and only if the output, y [n], depends only
an current and past values of the input,
x [n], x [n − 1], x [n − 2], . . ..

A filter is stable if and only if every finite-valued input
generates a finite-valued output. A causal first-order IIR filter
is stable if and only if |a| < 1.
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Review: Poles and Zeros

Suppose H(z) = 1+bz−1

1−az−1 , and |a| < 1. Now let’s evaluate |H(ω)|,
by evaluating |H(z)| at z = e jω:

|H(ω)| =
|e jω + b|
|e jω − a|

What it means |H(ω)| is the ratio of two vector lengths:

When the vector length |e jω +b| is small, then |H(ω)| is small.

When |e jω − a| is small, then |H(ω)| is LARGE.
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Review: Parallel Combination

Parallel combination of two systems looks like this:

y [n]

H1(z)

H2(z)

x [n]

Suppose that we know each of the systems separately:

H1(z) =
1

1− p1z−1
, H2(z) =

1

1− p2z−1

Then, to get H(z), we just have to add:

H(z) =
1

1− p1z−1
+

1

1− p2z−1
=

2− (p1 + p2)z−1

1− (p1 + p2)z−1 + p1p2z−2
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A General Second-Order All-Pole Filter

Let’s construct a general second-order all-pole filter (leaving out
the zeros; they’re easy to add later).

H(z) =
1

(1− p1z−1)(1− p∗1z
−1)

=
1

1− (p1 + p∗1)z−1 + p1p∗1z
−2

The difference equation that implements this filter is

Y (z) = X (z) + (p1 + p∗1)z−1Y (z)− p1p
∗
1z
−2Y (z)

Which converts to

y [n] = x [n] + 2<(p1)y [n − 1]− |p1|2y [n − 2]
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Partial Fraction Expansion

In order to find the impulse response, we do a partial fraction
expansion:

H(z) =
1

(1− p1z−1)(1− p∗1z
−1)

=
C1

1− p1z−1
+

C ∗1
1− p∗1z

−1

When we normalize the right-hand side of the equation above, we
get the following in the numerator:

1 + 0× z−1 = C1(1− p∗1z
−1) + C ∗1 (1− p1z

−1)

and therefore
C1 =

p1
p1 − p∗1
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Impulse Response of a Second-Order IIR

. . . and so we just inverse transform.

h[n] = C1p
n
1u[n] + C ∗1 (p∗1)nu[n]
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Understanding the Impulse Response of a Second-Order IIR

In order to understand the impulse response, maybe we should
invent some more variables. Let’s say that

p1 = e−σ1+jω1 , p∗1 = e−σ1−jω1

where σ1 is the half-bandwidth of the pole, and ω1 is its center
frequency. The partial fraction expansion gave us the constant

C1 =
p1

p1 − p∗1
=

p1
e−σ1 (e jω1 − e−jω1)

=
e jω1

2j sin(ω1)

whose complex conjugate is

C ∗1 = − e−jω1

2j sin(ω1)
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Impulse Response of a Second-Order IIR

Plugging in to the impulse response, we get

h[n] =
1

2j sin(ω1)

(
e jω1e(−σ1+jω1)n − e−jω1e(−σ1−jω1)n

)
u[n]

=
1

2j sin(ω1)
e−σ1n

(
e jω1(n+1) − e−jω1(n+1)

)
u[n]

=
1

sin(ω1)
e−σ1n sin(ω1(n + 1))u[n]
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Impulse Response of a Second-Order IIR

h[n] =
1

sin(ω1)
e−σ1n sin(ω1(n + 1))u[n]
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Example: Ideal Resonator

As the first example, let’s suppose we put p1 right on the unit
circle, p1 = e jω1 .
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Example: Resonator

The system function for this filter is

H(z) =
Y (z)

X (z)
=

1

1− 2 cos(ω1)z−1 + z−2

Solving for y [n], we get the difference equation:

y [n] = x [n] + 2 cos(ω1)y [n − 1]− y [n − 2]
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Example: Ideal Resonator

Just to make it concrete, let’s choose ω1 = π
4 , so the difference

equation is

y [n] = x [n] +
√

2y [n − 1]− y [n − 2]

If we plug x [n] = δ[n] into this equation, we get

y [0] = 1

y [1] =
√

2

y [2] = 2− 1 = 1

y [3] =
√

2−
√

2 = 0

y [4] = −1

y [5] = −
√

2

...
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Example: Ideal Resonator

Putting p1 = e jω1 into the general form, we find that the impulse
response of this filter is

h[n] =
1

sin(ω1)
sin(ω1(n + 1))u[n]

This is called an “ideal resonator” because it keeps ringing forever.
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An Ideal Resonator is Unstable

A resonator is unstable. The easiest way to see what this means is
by looking at its frequency response:

H(ω) = H(z)|z=e jω =
1

(1− e j(ω1−ω))(1− e j(−ω1−ω))

H(ω1) =
1

(1− 1)(1− e−2jω1)
=∞

So if x [n] = cos(ω1n), then y [n] is

y [n] = |H(ω1)| cos (ω1n + ∠H(ω1)) =∞
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Instability from the POV of the Impulse Response

From the point of view of the impulse response, you can think of
instability like this:

y [n] =
∑
m

x [m]h[n −m]

Suppose x [m] = cos(ω1m)u[m]. Then

y [n] = x [0]h[n] + x [1]h[n − 1] + x [2]h[n − 2] + . . .

We keep adding extra copies of h[n −m], for each m, forever.
Since h[n] never dies away, the result is that we keep building up
y [n] toward infinity.
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Try the quiz!

Try the quiz!



Review Second-Order Resonator Damped Bandwidth Speech Summary

Outline

1 Review: Poles and Zeros

2 Impulse Response of a Second-Order Filter

3 Example: Ideal Resonator

4 Example: Damped Resonator

5 Bandwidth

6 Example: Speech

7 Summary



Review Second-Order Resonator Damped Bandwidth Speech Summary

Example: Stable Resonator

Now, let’s suppose we put p1 inside the unit circle, p1 = e−σ1+jω1 .
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Example: Stable Resonator

The system function for this filter is

H(z) =
Y (z)

X (z)
=

1

1− 2e−σ1 cos(ω1)z−1 + e−2σ1z−2

Solving for y [n], we get the difference equation:

y [n] = x [n] + 2e−σ1 cos(ω1)y [n − 1]− e−2σ1y [n − 2]
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Example: Stable Resonator

Just to make it concrete, let’s choose ω1 = π
4 , and e−σ1 = 0.9, so

the difference equation is

y [n] = x [n] + 0.9
√

2y [n − 1]− 0.81y [n − 2]

If we plug x [n] = δ[n] into this equation, we get

y [0] = 1

y [1] = 0.9
√

2

y [2] = (0.9
√

2)2 − 0.81 = 0.81

y [3] = (0.9
√

2)(0.81)− (0.81)(0.9
√

2) = 0

y [4] = −(0.81)2

y [5] = −(0.9
√

2)(0.81)2

...
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Example: Stable Resonator

Putting p1 = e−σ1+jω1 into the general form, we find that the
impulse response of this filter is

h[n] =
1

sin(ω1)
e−σ1n sin(ω1(n + 1))u[n]

This is called a “stable resonator” or a “stable sinusoid” or a
“damped resonator” or a “damped sinusoid.” It rings at the
frequency ω1, but it gradually decays away.
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A Damped Resonator is Stable

A damped resonator is stable: any finite input will generate a finite
output.

H(ω) = H(z)|z=e jω =
1

(1− e−σ1+j(ω1−ω))(1− e−σ1+j(−ω1−ω))

H(ω1) =
1

(1− e−σ1)(1− e−σ1−2jω1)
≈ 1

1− e−σ1
≈ 1

σ1

So if x [n] = cos(ω1n), then y [n] is

y [n] = |H(ω1)| cos (ω1n + ∠H(ω1))

≈ 1

σ1
cos (ω1n + ∠H(ω1))
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Stability from the POV of the Impulse Response

From the point of view of the impulse response, you can think of
stability like this:

y [n] =
∑
m

x [m]h[n −m]

Suppose x [m] = cos(ω1m)u[m]. Then

y [n] = x [0]h[n] + x [1]h[n − 1] + x [2]h[n − 2] + . . .

We keep adding extra copies of h[n −m], for each m, forever.
However, since each h[n −m] dies away, and since they are being
added with a time delay between them, the result never builds all
the way to infinity.
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Magnitude Response of an All-Pole Filter

Until now, I have often used this trick, but have never really
discussed it with you:

|H(z)| =
1

|1− p1z−1| × |1− p2z−1|

=
|z |2

|z − p1| × |z − p2|

=
1

|e jω − p1| × |e jω − p2|

That’s why the magnitude response is just one over the product of
the two vector lengths.
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Magnitude Response at ω = ω1 ± ε

Now let’s suppose p1 = e−σ1+jω1 , and p2 = p∗1 = e−σ1−jω1 .
Consider what happens when ω = ω1 ± ε for small values of ε.

There are two poles, one at ω1, one at −ω1.

The pole at −ω1 is very far away from ω ≈ +ω1. In fact, over
the whole range ω = ω1 ± ε, this distance remains
approximately constant:

|e jω − p∗1 | = |e j(ω1±ε) − e−σ1−jω1)|
≈ |e jω1 − e−jω1 |
= 2| sin(ω1)|



Review Second-Order Resonator Damped Bandwidth Speech Summary

One pole remains very far away:
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Magnitude Response at ω = ω1 ± ε

The other vector is the one that decides the shape of |H(ω)|. We
could write it in a few different ways:

|e jω − p1| = |e jω| × |1− p1e
−jω|

= 1× |1− p1e
−jω|

= 1× |1− e−σ1+jω1e−jω|
= 1× |1− e−σ1+jω1e−j(ω1±ε)|
= 1× |1− e−σ1±jε|

Let’s use the approximation ex ≈ 1 + x , which is true for small
values of x . That gives us

|e jω − p1| = | − σ1 ± jε|
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Magnitude Response at ω = ω1 ± ε

There are three frequencies that really matter:

1 Right at the pole, at ω = ω1, we have

|e jω − p1| = σ1

2 At ± half a bandwidth, ω = ω1 ± σ1, we have

|e jω − p1| = | − σ1 ∓ jσ1| = σ1
√

2
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Magnitude Response at ω = ω1 ± ε

There are three frequencies that really matter:

1 Right at the pole, at ω = ω1, we have

|H(ω1)| ∝ 1

σ1

2 At ± half a bandwidth, ω = ω1 ± σ1, we have

|H(ω1 ± σ1)| =
1√
2
|H(ω1)|



Review Second-Order Resonator Damped Bandwidth Speech Summary

3dB Bandwidth

The 3dB bandwidth of an all-pole filter is the width of the
peak, measured at a level 1/

√
2 relative to its peak.

σ1 is half the bandwidth.
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Speech

The most important example of a damped resonator is speech.

Once every 5-10ms, your vocal folds close, abruptly shutting
off the airflow. This causes an instantaneous pressure impulse.

The impulse activates the impulse response of your vocal tract
(the area between the glottis and the lips).

Your vocal tract is a damped resonator.
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Speech is made up of Damped Sinusoids
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Speech is made up of Damped Sinusoids

Your vocal tract has an infinite number of resonant frequencies, all
of which ring at once:

H(z) =
∞∏
k=1

1

(1− pkz−1)(1− p∗kz
−1)

There are an infinite number, but most are VERY heavily damped,
so usually we only hear the first three or four.
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Center Freqs of First Two Poles Specify the Vowel
(Peterson & Barney, 1952)
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First Formant Resonator

When you look at a speech waveform, x [n], most of what you see
is the first resonance, called the “first formant.” Its resonant
frequency is roughly 400 ≤ F1 ≤ 800 usually, so at Fs = 16000Hz
sampling frequency, we get

ω1 =
2πF1
FS
∈
[ π

20
,
π

10

]
Its bandwidth might be about B1 ≈ 400Hz, so

σ1 =
1

2

(
2πB1

Fs

)
≈ π

40
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First Formant Frequency and Bandwidth in the Waveform
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First Formant Frequency and Bandwidth in the Spectrum
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Impulse Response of a Second-Order All-Pole Filter

A general all-pole filter has the system function

H(z) =
1

(1− p1z−1)(1− p∗1z
−1)

=
1

1− (p1 + p∗1)z−1 + p1p∗1z
−2

Its impulse response is

h[n] = C1p
n
1u[n] + C ∗1 (p∗1)nu[n]



Review Second-Order Resonator Damped Bandwidth Speech Summary

Impulse Response of a Second-Order All-Pole Filter

We can take advantage of complex numbers to write these as

H(z) =
1

1− 2e−σ1 cos(ω1)z−1 + e−2σ1z−2

and

h[n] =
1

sin(ω1)
e−σ1n sin(ω1(n + 1))u[n]
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Magnitude Response of a Second-Order All-Pole Filter

In the frequency response, there are three frequencies that really
matter:

1 Right at the pole, at ω = ω1, we have

|H(ω1)| ∝ 1

σ1

2 At ± half a bandwidth, ω = ω1 ± σ1, we have

|H(ω1 ± σ1)| =
1√
2
|H(ω1)|
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