
Review Line Noise Notch Filters Summary

Lecture 29: Notch Filters

Mark Hasegawa-Johnson

ECE 401: Signal Processing

Review Line Noise Notch Filters Summary

1 Review: Poles and Zeros

2 Using Zeros to Cancel Line Noise

3 Notch Filters

4 Summary

Review Line Noise Notch Filters Summary

Outline

1 Review: Poles and Zeros

2 Using Zeros to Cancel Line Noise

3 Notch Filters

4 Summary

Review Line Noise Notch Filters Summary

Review: Poles and Zeros

A first-order autoregressive filter,

y [n] = x [n] + bx [n − 1] + ay [n − 1],

has the impulse response and system function

h[n] = anu[n] + ban−1u[n − 1]↔ H(z) =
1 + bz−1

1− az−1
,

where a is called the pole of the filter, and −b is called its zero.

Review Line Noise Notch Filters Summary

Causality and Stability

A filter is causal if and only if the output, y [n], depends only
an current and past values of the input,
x [n], x [n − 1], x [n − 2],

A filter is stable if and only if every finite-valued input
generates a finite-valued output. A causal first-order IIR filter
is stable if and only if |a| < 1.

Review Line Noise Notch Filters Summary

Review: Poles and Zeros

Suppose H(z) = 1+bz−1

1−az−1 , and |a| < 1. Now let’s evaluate |H(ω)|,
by evaluating |H(z)| at z = e jω:

|H(ω)| =
|e jω + b|
|e jω − a|

What it means |H(ω)| is the ratio of two vector lengths:

When the vector length |e jω +b| is small, then |H(ω)| is small.

When |e jω − a| is small, then |H(ω)| is LARGE.

Review Line Noise Notch Filters Summary

Review: Complex Numbers

Suppose that

p1 = x1 + jy1 = |p1|e jθ1

p2 = p∗1 = x1 − jy1 = |p1|e−jθ1

Then

p1 + p2 is real:

p1 + p2 = x1 + jy1 + x1 − jy1 = 2x1

p1p2 is also real:

p1p2 = |p1|e jθ1 |p1|e−jθ1 = |p1|2

Review Line Noise Notch Filters Summary

Outline

1 Review: Poles and Zeros

2 Using Zeros to Cancel Line Noise

3 Notch Filters

4 Summary

Review Line Noise Notch Filters Summary

The problem of electrical noise

When your microphone cable is too close to an electrical cord, you
often get noise at the harmonics of 60Hz (especially at 120Hz as
shown here; sometimes also at 180Hz and 240Hz).

Review Line Noise Notch Filters Summary

Can we use zeros?

As you know, zeros in H(z) cause dips in H(ω). Can we use that,
somehow, to cancel out noise at a particular frequency?

Review Line Noise Notch Filters Summary

Can we use zeros?

In particular,

H(z) =
1 + bz−1

1− az−1

The pole needs to have a magnitude less than one (|a| < 1),
otherwise the filter will be unstable, but. . .

the zero doesn’t have that restriction. We can set |b| = 1 if
we want to.

In particular, suppose we want to completely cancel all inputs
at ω = ωc . Can we just set H(e jωc) = 0?

Review Line Noise Notch Filters Summary

Q: Can we just set H(e jωc) = 0?
A: YES!

Review Line Noise Notch Filters Summary

Using Zeros to Cancel Line Noise

The filter shown in the previous slide is just H(z) = 1 + bz−1, i.e.,

y [n] = x [n] + bx [n − 1]

There are two problems with this filter:

1 Complex: b needs to be complex, therefore y [n] will be
complex-valued, even if x [n] is real. Can we design a filter
with a zero at z = −b, but with real-valued outputs?

2 Distortion: H(z) cancels the line noise, but it also changes
signal amplitudes at every other frequency.

Review Line Noise Notch Filters Summary

Complex Conjugate Zeros

The problem of complex outputs is solved by choosing
complex-conjugate zeros. Suppose we choose zeros at

r1 = e jωc , r2 = r∗1 = e−jωc

Then the filter is

H(z) = (1− r1z
−1)(1− r2z

−1) = 1− (r1 + r2)z−1 + r1r2z
−2,

but from our review of complex numbers, we know that

r1 + r2 = 2<(r1) = 2 cos(ωc)

r1r2 = |r1|2 = 1

Review Line Noise Notch Filters Summary

Complex Conjugate Zeros

So the filter is

H(z) = (1− r1z
−1)(1− r2z

−1) = 1− 2 cos(ωc)z−1 + z−2.

In other words,

y [n] = x [n]− 2 cos(ωc)x [n − 1] + x [n − 2]

Its impulse response is

h[n] =

1 n = 0

−2 cosωc n = 1

1 n = 2

0 otherwise

Review Line Noise Notch Filters Summary

Complex Conjugate Zeros

Review Line Noise Notch Filters Summary

Outline

1 Review: Poles and Zeros

2 Using Zeros to Cancel Line Noise

3 Notch Filters

4 Summary

Review Line Noise Notch Filters Summary

Distortion

The two-zero filter cancels line noise, but it also distorts the
signal at every other frequency.

Specifically, it amplifies signals in proportion as their frequency
is far away from ωc . Since ωc is probably low-frequency, H(z)
probably makes the signal sound brassy or tinny.

Ideally, we’d like the following frequency response. Is this
possible?

H(ω) =

{
0 ω = ωc

1 most other frequencies

Review Line Noise Notch Filters Summary

Notch Filter: A Pole for Every Zero

The basic idea of a notch filter is to have a pole for every zero.

H(z) =
1− rz−1

1− pz−1
, |H(ω)| =

|1− re−jω|
|1− pe−jω|

and then choose r = e jωc and p = ae jωc , for some a that is very
close to 1.0, but not quite 1.0. That way,

When ω = ωc , the numerator is exactly

|1− e j(ωc−ωc)| = |1− 1| = 0

When ω 6= ωc ,

|e jω − r | ≈ |e jω − p|, so |H(ω)| ≈ 1

Review Line Noise Notch Filters Summary

Notch Filter: A Pole for Every Zero

The red line is |e jω − r | (distance to the zero on the unit circle).
The blue line is |e jω − p| (distance to the pole inside the unit
circle). They are almost the same length.

Review Line Noise Notch Filters Summary

Notch Filter: Practical Considerations

Now let’s consider two practical issues:

How do you set the bandwidth of the notch?

How do you get real-valued coefficients in the difference
equation?

Review Line Noise Notch Filters Summary

Bandwidth of the Notch

In signal processing, we often talk about the “3dB Bandwidth” of
a zero, pole, or notch. Decibels (dB) are defined as

Decibels = 20 log10 |H(ω)| = 10 log10 |H(ω)|2

The 3dB bandwidth of a notch is the bandwidth, B, at which
20 log10 |H

(
ωc ± B

2

)
| = −3dB. This is a convenient number

because

−3 ≈ 20 log10

(
1√
2

)
,

so when we talk about 3dB bandwidth, we’re really talking about
the bandwidth at which |H(ω)| is 1√

2
.

Review Line Noise Notch Filters Summary

Bandwidth of the Notch

The 3dB bandwidth of a notch filter is the frequency ω = ωc + B
2

at which
1√
2

=
|1− rz−1|
|1− pz−1|

Let’s plug in z = e j(ωc+B/2), r = e jωc , and p = ae jωc , we get

1√
2

=
|1− e j(ω−ωc)|
|1− ae j(ω−ωc)|

=
|1− e jB/2|
|1− ae jB/2|

=
|1− e jB/2|

|1− e ln(a)+jB/2|
.

Let’s use the approximation ex ≈ 1 + x , and then solve for B. We
get:

1√
2

=
| − jB/2|

| − ln(a)− jB/2|
⇒ B = −2 ln(a)

Review Line Noise Notch Filters Summary

Bandwidth B = −2 ln(a)

Review Line Noise Notch Filters Summary

Bandwidth B = −2 ln(a)

Review Line Noise Notch Filters Summary

First-Order Notch Filter has Complex Outputs

A notch filter is

H(z) =
1− rz−1

1− pz−1

which we implement using just one line of python:

y [n] = x [n]− rx [n − 1] + py [n − 1]

The problem: r and p are both complex, therefore, even if x [n] is
real, y [n] will be complex.

Review Line Noise Notch Filters Summary

Real-Valued Coefficients ⇔ Conjugate Zeros and Poles

To get real-valued coefficients, we have to use a second-order filter
with complex conjugate poles and zeros (r2 = r∗1 = e−jωc and
p2 = p∗1 = ae−jωc):

H(z) =
(1− r1z

−1)(1− r∗1 z
−1)

(1− p1z−1)(1− p∗1z
−1)

=
1− (r1 + r∗1)z−1 + |r1|2z−2

1− (p1 + p∗1)z−1 + |p1|2z−2

=
1− 2 cosωcz

−1 + z−2

1− 2a cosωcz−1 + a2z−2

So then, we can implement it as a second-order difference
equation, using just one line of code in python:

y [n] = x [n]−2 cosωcx [n−1]+x [n−2]+2a cosωcy [n−1]−a2y [n−2]

Review Line Noise Notch Filters Summary

Real-Valued Coefficients ⇔ Conjugate Zeros and Poles

If the poles and zeros come in conjugate pairs, then we get

H(z) =
(1− r1z

−1)(1− r∗1 z
−1)

(1− p1z−1)(1− p∗1z
−1)

=
b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2

where all the coefficients are real-valued:

b0 = 1

b1 = −2 cosωc

b2 = 1

a1 = 2a cosωc

a2 = −a2

Review Line Noise Notch Filters Summary

Notch Filter with Conjugate-Pair Zeros and Poles

|H(ω)| =
|e jω − r1| × |e jω − r2|
|e jω − p1| × |e jω − p2|

Review Line Noise Notch Filters Summary

Summary: How to Implement a Notch Filter

To implement a notch filter at frequency ωc radians/sample, with
a bandwidth of − ln(a) radians/sample, you implement the
difference equation:

y [n] = x [n]−2 cos(ωc)x [n−1]+x [n−2]+2a cos(ωc)y [n−1]−a2y [n−2]

which gives you the notch filter

H(z) =
(1− r1z

−1)(1− r∗1 z
−1)

(1− p1z−1)(1− p∗1z
−1)

Review Line Noise Notch Filters Summary

Try the quiz!

Try the quiz!

Review Line Noise Notch Filters Summary

Outline

1 Review: Poles and Zeros

2 Using Zeros to Cancel Line Noise

3 Notch Filters

4 Summary

Review Line Noise Notch Filters Summary

Summary: How to Implement a Notch Filter

To implement a notch filter at frequency ωc radians/sample, with
a bandwidth of − ln(a) radians/sample, you implement the
difference equation:

y [n] = x [n]−2 cos(ωc)x [n−1]+x [n−2]+2a cos(ωc)y [n−1]−a2y [n−2]

which gives you the notch filter

H(z) =
(1− r1z

−1)(1− r∗1 z
−1)

(1− p1z−1)(1− p∗1z
−1)

with the magnitude response:

|H(ω)| =

0 ωc

1√
2

ωc ± ln(a)

≈ 1 ω < ω + ln(a) or ω > ω − ln(a)

	Review: Poles and Zeros
	Using Zeros to Cancel Line Noise
	Notch Filters
	Summary

	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

