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Review: Frequency Response

@ Tones in — Tones out

x[n] = &“" = y[n] = H(w)e"
x[n] = cos (wn) — y[n] = |H(w)| cos (wn + LH(w))
x[n] = Acos (wn + 6) — y[n] = A|H(w)| cos (wn+ 0 + ZH(w))

@ where the Frequency Response is given by

H(w) = h[m]e /™
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Example: First Difference

yln] = x[n] = x[n = 1] = A[m]x[n — m]

1 n=20
h[n]{l n=1

0 otherwise

H(w) =Y hlmle 7™ =1 e
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Another way to think about first difference

yln] = x[n] = x[n —1] (1)
But remember the delay property of the DTFT:

x[n — k] <> e KX (w)
So we could take the DTFT of each term in Eq. (1) to get:

Y(w) = X(w) — e X (w) = (1- efjw) X(w)
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Another way to think about first difference

Y(w) = X(w) — e “X(w) = (1 - e™*) X(w)

But remember the convolution property of the DTFT:
yln] = hln] x x[n] & Y (w) = H(w)X(w)

So we find that:
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Autoregressive Filter

Today, instead of filters with this form:
ylnl = x[n] = x[n —1]
... we want to start studying filters of this form:

ylnl = x[n] = y[n —1]

e This is called autoregressive, meaning that y[n] depends on
past values (regressive) of itself (auto).

@ This is also an infinite impulse response (IIR) filter, because
the impulse response (h[n]) is infinitely long.
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Autoregressive Difference Equations

An autoregressive filter is one in which the output, y[n], depends
on past values of itself (auto=self, regress=go back). For
example,

y[n] = x[n] + 0.3x[n — 1] + 0.8y[n — 1]
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Causal and Anti-Causal Filters

o If the outputs of a filter depend only on current and past
values of the input, then the filter is said to be causal. An
example is

y[n] = x[n] + 0.3x[n — 1] 4+ 0.8y[n — 1]

@ If the outputs depend only on current and future values of
the input, the filter is said to be anti-causal, for example

y[n] = x[n] + 0.3x[n+ 1] + 0.8y[n + 1]

@ If the filter is neither causal nor anti-causal, we say it's
“non-causal.”

@ Feedforward non-causal filters are easy to analyze, but when
analyzing feedback, we will stick to causal filters.
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Autoregressive Difference Equations

We can find the frequency response by taking the DTFT of each
term in the equation:

y[n] = x[n] + 0.3x[n — 1] + 0.8y[n — 1]
Y(w) = X(w) + 0.3e 7 X(w) + 0.8e 7 Y (2)



Autoregressive
0000®0

Frequency Response

In order to find the frequency response, we need to solve for

H(w) = x.
Y(w) = X(w) +0.3e7“X(w) + 0.8 Y (w)
(1-0.8e77%) Y(w) = X(w)(1 + 0.3e7%)
_ Y(w)  1+03ev
HW) = @) ~ T-08e 7
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Frequency Response

Here is the frequency response of this filter, plotted using
np.abs((1+0.3*np.exp(-1j*omega) )/ (1-0.8*np.exp(-1j*omega) )

[H(w)| = (1 + 0.3e/)/(1 — 0.8e71¥)

T T
0 w4 w2 3n/4 n
Frequency (w)
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e Finite vs. Infinite Impulse Response
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Impulse Response of an Autoregressive Filter

One way to find the impulse response of an autoregressive filter is
the same as for any other filter: feed in an impulse, x[n] = d[n],
and what comes out is the impulse response, y[n] = h[n].

h[n] = 6[n] +0.36[n — 1] + 0.8h[n — 1]

hln] =0, n<0

h[0] =46[0] =1

h[1] = 0+ 0.35[0] + 0.8h[0] = 1.1
h[2] = 0+ 0+ 0.8h[1] = 0.88

h[3] = 0+ 0 + 0.8h[2] = 0.704

h[n] = 1.1(0.8)" ! ifn>1
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FIR vs. IR Filters

@ Most autoregressive filters are also infinite impulse response
(1IR) filters, because h[n] is infinitely long (never ends).

e A difference equation with only feedforward terms (like we
saw in the last lecture) is always a finite impulse response
(FIR) filter, because h[n] has finite length.
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General form of an FIR filter

M
ylnl = bix[n — k] =Y hlk]x[n — K]
k=0 k

b < k<M
plk = { D 0= K=
0 otherwise

This filter has an impulse response (h[n]) that is M + 1 samples
long.
@ The by's are called feedforward coefficients, because they
feed x[n] forward into y[n].
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General form of an |IR filter

N M
> ayln— 0= bix[n—K
(=0 k=0

@ The a;'s are caled feedback coefficients, because they feed
y[n] back into itself.

e Can we find h[n] in terms of a; and by?
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@ Impulse Response and Transfer Function of a First-Order
Autoregressive Filter
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First-Order Feedback-Only Filter

Let's find the general form of h[n], for the simplest possible
autoregressive filter: a filter with one feedback term, and no

feedforward terms, like this:
y[n] = x[n] + ay[n — 1],

where a is any constant (positive, negative, real, or complex).
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Impulse Response of a First-Order Filter

We can find the impulse response by putting in x[n] = d[n], and
getting out y[n] = h[n]:

h[n] = d[n] + ah[n — 1].

Recursive computation gives

hl0] =1
h[l] = a
h[2] = a°

h[n] = a"u[n]
where we use the notation u[n] to mean the “unit step function,”

u[n]—{l n>0

0 n<©O
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Impulse Response of Stable First-Order Filters

The coefficient, a, can be positive, negative, or even complex. If a
is complex, then h[n] is also complex-valued.

h[n] = (0.9)"uln]

1

IIITTTTTTTTTT???ooo-;;;;.;...

=5 0 5 10 15 20 25 30

h[n]=(-0.9)"uln]

-5 0 5 10 15 20 25 30

h[n] = (0.9e™3)"y[n] (Imaginary part dashed)
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Impulse Response of Unstable First-Order Filters

If |a] > 1, then the impulse response grows exponentially. If
|a| = 1, then the impulse response never dies away. In either case,
we say the filter is “unstable.”

h[nl=(1.1)"uln]

10 4

0M.."T""T”TTTTT”””

10 15 20 25 30

hln] = (=1.1)"uln]
e eo st ?? T
0] eesestetututyte st s T 5 5 1 | 'l

T
=5 0 5 10 15 20 25 30

hln] = (1.1e3)"y[n] (Imaginary part dashed)
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Instability

@ A stable filter is one that always generates finite outputs
(ly[n]| finite) for every possible finite input (|x[n]| finite).

@ An unstable filter is one that, at least sometimes, generates
infinite outputs, even if the input is finite.

o A first-order IIR filter is stable if and only if |a| < 1.
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Frequency Response of a First-Order Filter

If the filter is stable (|a] < 1), then we can find the frequency
response by taking the DTFT of h[n]:

n >
hin] = a" n>0
0 n<Q0

o0

Hw)= > hln]e "

n=—oo
e 9]

(ae7%)"
n=0
]_—a]é*jw |a| < ]‘

00 la| > 1
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Frequency Response of a First-Order Filter

If the filter is stable (]a] < 1), then we can also find the frequency
response by taking the DTFT of each term in the filter equation:

yln] = x[n] — ay[n —1],
Y(w) = X(w) — ae Y (w),
Y (w) 1

H(w) = X(w) T 1-ae

That looks like it works even if |a| > 1, but it's a lie. If [a| > 1,
then when you put a pure tone as input, you might get y[n] = co
as output instead of y[n] = H(w)x[n].
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Frequency Response of a First-Order Filter

H(w) =

h[n]=(0.9)"u[n]

1

1— ae—Jw

iff [a| <1

H(w) = 1/(1 - (0.9)e7»)

10 A

14
[l N
ol 117290900000 000a
: T : : — . . . : . . . .
=5 ) 5 10 15 20 25 30 0.0 0.5 10 15 2.0 2.5 3.0
hLn] = (-0.9)"uln] H{w) = 1/(1 - (-0.9)e7¥)
14 10 S
0 ....I_I_LL_LL_YT'TLrL‘JTL.W"M 5
—IE (I) 5I 1‘0 £5 Zb 2‘5 3b 0.‘0 0.‘5 1.‘0 l.‘5 2.‘0 2.‘5 3.‘0
A[n] = (0.9e/™3)"un] (Imaginary part dashed) H(w) = 1/(1 — (0.9e/5)e—/w)
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Try the quiz!

Try the quiz!
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© Filters with both feedforward and feedback terms
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First-Order Filter

Now, let’s find the frequency response of a general first-order filter,
including BOTH feedforward and feedback delays:

y[n] = x[n] + bx[n — 1] 4+ ay[n — 1],

where we'll assume that |a| < 1, so the filter is stable.
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Frequency Response of a First-Order Filter

If |]a] <1, we can find the frequency response by taking the DTFT
of each term in this equation:

y[n] = x[n] + bx[n — 1] 4+ ay[n — 1],
Y(w) = X(w) + be_ij(w) + ae ¥ Y (w),
which we can solve to get

Y(w) 1+ be ¥
X(w) 1—ae v’

H(w) =
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Treating H(w) as a Ratio of Two Polynomials

Notice that H(w) is the ratio of two polynomials:

_ l4be ¥ ¥+ b
 1—gage i ew—g

H(w)

@ e/ = —bis called the zero of H(w), meaning that, if |b| = 1,
then H(w) =0 at w = Z(—b).

e ¢/ = ais called the pole of H(w), meaning that, in the limit
as |a| = 1, H(Za) — .
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Vectors in the Complex Plane

Suppose we write |H(w)]| like this:

e+ bl
e —a

[H(w)]

What we've discovered is that |H(w)] is small when the vector
distance |e/ + b| is small, but LARGE when the vector distance
|e/“ — a| is small.
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[H{w)]
2.0 imag(z) 6 4
1.5 4
5
1.0 b
44
0.54
0.0 Beal(z) 34
—0.5 4
2
~1.0
14
~15
=2.0 1 04
T T T T T T T T T T
-2 -1 o] 1 2 o w4 w2 34 n

Frequency (w)
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Why This is Useful

Now we have another way of thinking about frequency response.
@ Instead of just LPF, HPF, or BPF, we can design a filter to
have zeros at particular frequencies, Z(—b), AND to have
poles at particular frequencies, Za,
o The magnitude |H(w)| is [e/* + b|/|e/* — al.
@ Using this trick, we can design filters that have much more

subtle frequency responses than just an ideal LPF, BPF, or
HPF.
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Summary: Autoregressive Filter

@ An autoregressive filter is a filter whose current output,
y[n], depends on past values of the output.

@ An autoregressive filter is usually infinite impulse response
(1IR), because h[n] has infinite length.

@ A filter with only feedforward coefficients, and no feedback
coefficients, is called finite impulse response (FIR), because
h[n] has finite length (its length is just the number of
feedforward terms in the difference equation).

@ The first-order, feedback-only autoregressive filter has this
impulse response and frequency response:

1

h[n] = a"u[n] +» H(w) = 1 2e0



Summary
oce

Summary: Poles and Zeros

A first-order autoregressive filter,
y[n] = x[n] + bx[n — 1] 4+ ay[n — 1],
has the impulse response and frequency response:

1+ be ¥

h[n] = a"u[n] 4+ ba"tu[n — 1] > H(w) = Fppye

where a is called the pole of the filter, and —b is called its zero.
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