Review	FFT	Overlap-Add	Conclusion

Lecture 25: Overlap-Add

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review	FFT	Overlap-Add	Conclusion

Review	FFT	Overlap-Add	Conclusion
••	000000	000000	00
Outline			

2 Fast Fourier Transform

3 Overlap-Add

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Multiplying the DFT means **circular convolution** of the time-domain signals:

$$y[n] = h[n] \circledast x[n] \leftrightarrow Y[k] = H[k]X[k],$$

Circular convolution $(h[n] \otimes x[n])$ is defined like this:

$$h[n] \circledast x[n] = \sum_{m=0}^{N-1} x[m]h[((n-m))_N] = \sum_{m=0}^{N-1} h[m]x[((n-m))_N]$$

Circular convolution is the same as linear convolution if and only if $N \ge L + M - 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Review	FFT	Overlap-Add	Conclusion
00	●00000	000000	00
Outline			

Convolution is an $O\{N^2\}$ operation: each of the N samples of y[n] is created by adding up N samples of x[m]h[n-m]:

$$y[n] = \sum_{m} x[m]h[n-m]$$

The way we've learned it so far, the DFT is **also** an $O\{N^2\}$ operation: each of the *N* samples of X[k] is created by adding up *N* samples of $x[n]e^{j\omega_k n}$:

$$X[k] = \sum_{n} x[n] e^{-j\frac{2\pi kn}{N}}$$

However...

Review	FFT	Overlap-Add	Conclusion
00	○0●000	000000	00
The Fast Fo	ourier Transform		

- The fast Fourier transform (FFT) is a clever divide-and-conquer algorithm that computes all of the N samples of X[k], from x[n], in only N log₂ N multiplications.
- It does this by computing all N of the X[k], all at once.
- Multiplications $(x[n] \times w_{k,n})$, for some coefficient $w_{k,n}$ are grouped together, across different groups of k and n.
- On average, each of the N samples of X[k] can be computed using only log₂ N multiplications, for a total complexity of N log₂ N.

Consider filtering N = 1024 samples of audio (about 1/40 second) with a filter, h[n], that is 1024 samples long.

- Time-domain convolution requires $1024 \times 1024 \approx 1,000,000$ multiplications. If a GPU does 40 billion multiplications/second, then it will take an hour of GPU time to apply this operation to a 1000-hour audio database.
- FFT requires 1024 × log₂ 1024 ≈ 10,000 multiplications. If a GPU does 40 billion multiplications/second, then it will take 36 seconds of GPU time to apply this operation to a 1000-hour audio database.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Review	FFT	Overlap-Add	Conclusion
00	0000●0	000000	00
How is it used?			

Suppose we have a 1025-sample h[n], and we want to filter a one-hour audio (144,000,000 samples). Divide the audio into frames, x[n], of length M = 1024, zero-pad to N = L + M - 1 = 2048, and take their FFTs.

- $H[k] = FFT\{h[n]\}$: total cost is trivial, because we only need to do this once.
- $X[k] = FFT\{x[n]\}$: total cost is $N \log N$ per M samples.
- Y[k] = X[k]H[k]: total cost is N multiplications per M samples.

• $y[n] = FFT^{-1}{Y[k]}$: total cost is $N \log N$ per M samples.

Grand total: $N \times (2 \log_2 N + 1) = 2048 \times 23 = 47104$ multiplications per 1024 audio samples, or 46 multiplications per sample.

Review	FFT	Overlap-Add	Conclusion
00	○0000●	000000	00
How do we	recombine the y	/[n]?	

- The main topic of today's lecture: how do we recombine the y[n]?
- Remember: each frame of x[n] was 1024 samples, but after zero-padding and convolution, each frame of y[n] is 2048 samples.

• How do we recombine them?

Review	FFT	Overlap-Add	Conclusion
00	000000	●○○○○○	00
Outline			

2 Fast Fourier Transform

Overlap-Add

Review	FFT	Overlap-Add	Conclusion
		00000	

Let's look more closely at what convolution is. Each sample of x[n] generates an impulse response. Those impulse responses are added together to make the output.

Review	FFT	Overlap-Add	Conclusion
		00000	

First two lines show the first two frames (input on left, output on right). Last line shows the total input (left) and output (right).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Review	FFT	Overlap-Add	Conclusion
00	000000	○00●00	00
The Overla	n-Add Algorithm		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Divide x[n] into frames
- ② Generate the output from each frame
- Overlap the outputs, and add them together

Review	FFT	Overlap-Add	Conclusion
00	000000	○○○○●○	
The Overlap-Ad	d Algorithm		

• Divide x[n] into frames (w[n] is a length-M rectangle).

 $x_t[n] = x[n + tM]w[n]$ $X_t[k] = FFT\{x_t[n]\}$

Generate the output from each frame

 $Y_t[k] = X_t[k]H[k]$ $y_t[n] = FFT^{-1}\{y_t[n]\}$

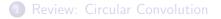
Overlap the outputs, and add them together

$$y[n] = \sum_{t} y_t[n - tM]$$

Review	FFT	Overlap-Add	Conclusion
00	000000	○0000●	
Quiz			

Try the quiz!

Review	FFT	Overlap-Add	Conclusion
00	000000	000000	00
Outline			



2 Fast Fourier Transform

3 Overlap-Add

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Review	FFT	Overlap-Add	Conclusion	
00	000000	000000	○●	
The Overlap-Add Algorithm				

• Divide x[n] into frames (w[n] is a length-M rectangle).

 $x_t[n] = x[n + tM]w[n]$ $X_t[k] = FFT\{x_t[n]\}$

Generate the output from each frame

 $Y_t[k] = X_t[k]H[k]$ $y_t[n] = FFT^{-1}\{y_t[n]\}$

Overlap the outputs, and add them together

$$y[n] = \sum_{t} y_t[n - tM]$$