
Review FFT Overlap-Add Conclusion

Lecture 25: Overlap-Add

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis



Review FFT Overlap-Add Conclusion

1 Review: Circular Convolution

2 Fast Fourier Transform

3 Overlap-Add

4 Conclusion



Review FFT Overlap-Add Conclusion

Outline

1 Review: Circular Convolution

2 Fast Fourier Transform

3 Overlap-Add

4 Conclusion



Review FFT Overlap-Add Conclusion

Review: Circular convolution

Multiplying the DFT means circular convolution of the
time-domain signals:

y [n] = h[n] ~ x [n]↔ Y [k] = H[k]X [k],

Circular convolution (h[n] ~ x [n]) is defined like this:

h[n] ~ x [n] =
N−1∑
m=0

x [m]h [((n −m))N ] =
N−1∑
m=0

h[m]x [((n −m))N ]

Circular convolution is the same as linear convolution if and only if
N ≥ L + M − 1.



Review FFT Overlap-Add Conclusion

Outline

1 Review: Circular Convolution

2 Fast Fourier Transform

3 Overlap-Add

4 Conclusion



Review FFT Overlap-Add Conclusion

Computational Complexity: Convolution and DFT

Convolution is an O{N2} operation: each of the N samples of y [n]
is created by adding up N samples of x [m]h[n −m]:

y [n] =
∑
m

x [m]h[n −m]

The way we’ve learned it so far, the DFT is also an O{N2}
operation: each of the N samples of X [k] is created by adding up
N samples of x [n]e jωkn:

X [k] =
∑
n

x [n]e−j 2πkn
N

However. . .



Review FFT Overlap-Add Conclusion

The Fast Fourier Transform

The fast Fourier transform (FFT) is a clever
divide-and-conquer algorithm that computes all of the N
samples of X [k], from x [n], in only N log2N multiplications.

It does this by computing all N of the X [k], all at once.

Multiplications (x [n]× wk,n, for some coefficient wk,n) are
grouped together, across different groups of k and n.

On average, each of the N samples of X [k] can be computed
using only log2N multiplications, for a total complexity of
N log2N.



Review FFT Overlap-Add Conclusion

What’s the difference between N2 and N log2 N?

Consider filtering N = 1024 samples of audio (about 1/40 second)
with a filter, h[n], that is 1024 samples long.

Time-domain convolution requires 1024× 1024 ≈ 1, 000, 000
multiplications. If a GPU does 40 billion
multiplications/second, then it will take an hour of GPU time
to apply this operation to a 1000-hour audio database.

FFT requires 1024× log2 1024 ≈ 10, 000 multiplications. If a
GPU does 40 billion multiplications/second, then it will take
36 seconds of GPU time to apply this operation to a
1000-hour audio database.



Review FFT Overlap-Add Conclusion

How is it used?

Suppose we have a 1025-sample h[n], and we want to filter a
one-hour audio (144,000,000 samples). Divide the audio into
frames, x [n], of length M = 1024, zero-pad to
N = L + M − 1 = 2048, and take their FFTs.

H[k] = FFT{h[n]}: total cost is trivial, because we only need
to do this once.

X [k] = FFT{x [n]}: total cost is N logN per M samples.

Y [k] = X [k]H[k]: total cost is N multiplications per M
samples.

y [n] = FFT−1{Y [k]}: total cost is N logN per M samples.

Grand total: N × (2 log2N + 1) = 2048× 23 = 47104
multiplications per 1024 audio samples, or 46 multiplications per
sample.



Review FFT Overlap-Add Conclusion

How do we recombine the y [n]?

The main topic of today’s lecture: how do we recombine the
y [n]?

Remember: each frame of x [n] was 1024 samples, but after
zero-padding and convolution, each frame of y [n] is 2048
samples.

How do we recombine them?



Review FFT Overlap-Add Conclusion

Outline

1 Review: Circular Convolution

2 Fast Fourier Transform

3 Overlap-Add

4 Conclusion



Review FFT Overlap-Add Conclusion

Let’s look more closely at what convolution is. Each sample of x[n]
generates an impulse response. Those impulse responses are added
together to make the output.



Review FFT Overlap-Add Conclusion

First two lines show the first two frames (input on left, output on
right). Last line shows the total input (left) and output (right).



Review FFT Overlap-Add Conclusion

The Overlap-Add Algorithm

1 Divide x [n] into frames

2 Generate the output from each frame

3 Overlap the outputs, and add them together



Review FFT Overlap-Add Conclusion

The Overlap-Add Algorithm

1 Divide x [n] into frames (w [n] is a length-M rectangle).

xt [n] = x [n + tM]w [n]

Xt [k] = FFT{xt [n]}

2 Generate the output from each frame

Yt [k] = Xt [k]H[k]

yt [n] = FFT−1{yt [n]}

3 Overlap the outputs, and add them together

y [n] =
∑
t

yt [n − tM]



Review FFT Overlap-Add Conclusion

Quiz

Try the quiz!



Review FFT Overlap-Add Conclusion

Outline

1 Review: Circular Convolution

2 Fast Fourier Transform

3 Overlap-Add

4 Conclusion



Review FFT Overlap-Add Conclusion

The Overlap-Add Algorithm

1 Divide x [n] into frames (w [n] is a length-M rectangle).

xt [n] = x [n + tM]w [n]

Xt [k] = FFT{xt [n]}

2 Generate the output from each frame

Yt [k] = Xt [k]H[k]

yt [n] = FFT−1{yt [n]}

3 Overlap the outputs, and add them together

y [n] =
∑
t

yt [n − tM]


	Review: Circular Convolution
	Fast Fourier Transform
	Overlap-Add
	Conclusion

	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.255: 
	1.254: 
	1.253: 
	1.252: 
	1.251: 
	1.250: 
	1.249: 
	1.248: 
	1.247: 
	1.246: 
	1.245: 
	1.244: 
	1.243: 
	1.242: 
	1.241: 
	1.240: 
	1.239: 
	1.238: 
	1.237: 
	1.236: 
	1.235: 
	1.234: 
	1.233: 
	1.232: 
	1.231: 
	1.230: 
	1.229: 
	1.228: 
	1.227: 
	1.226: 
	1.225: 
	1.224: 
	1.223: 
	1.222: 
	1.221: 
	1.220: 
	1.219: 
	1.218: 
	1.217: 
	1.216: 
	1.215: 
	1.214: 
	1.213: 
	1.212: 
	1.211: 
	1.210: 
	1.209: 
	1.208: 
	1.207: 
	1.206: 
	1.205: 
	1.204: 
	1.203: 
	1.202: 
	1.201: 
	1.200: 
	1.199: 
	1.198: 
	1.197: 
	1.196: 
	1.195: 
	1.194: 
	1.193: 
	1.192: 
	1.191: 
	1.190: 
	1.189: 
	1.188: 
	1.187: 
	1.186: 
	1.185: 
	1.184: 
	1.183: 
	1.182: 
	1.181: 
	1.180: 
	1.179: 
	1.178: 
	1.177: 
	1.176: 
	1.175: 
	1.174: 
	1.173: 
	1.172: 
	1.171: 
	1.170: 
	1.169: 
	1.168: 
	1.167: 
	1.166: 
	1.165: 
	1.164: 
	1.163: 
	1.162: 
	1.161: 
	1.160: 
	1.159: 
	1.158: 
	1.157: 
	1.156: 
	1.155: 
	1.154: 
	1.153: 
	1.152: 
	1.151: 
	1.150: 
	1.149: 
	1.148: 
	1.147: 
	1.146: 
	1.145: 
	1.144: 
	1.143: 
	1.142: 
	1.141: 
	1.140: 
	1.139: 
	1.138: 
	1.137: 
	1.136: 
	1.135: 
	1.134: 
	1.133: 
	1.132: 
	1.131: 
	1.130: 
	1.129: 
	1.128: 
	1.127: 
	1.126: 
	1.125: 
	1.124: 
	1.123: 
	1.122: 
	1.121: 
	1.120: 
	1.119: 
	1.118: 
	1.117: 
	1.116: 
	1.115: 
	1.114: 
	1.113: 
	1.112: 
	1.111: 
	1.110: 
	1.109: 
	1.108: 
	1.107: 
	1.106: 
	1.105: 
	1.104: 
	1.103: 
	1.102: 
	1.101: 
	1.100: 
	1.99: 
	1.98: 
	1.97: 
	1.96: 
	1.95: 
	1.94: 
	1.93: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.127: 
	0.126: 
	0.125: 
	0.124: 
	0.123: 
	0.122: 
	0.121: 
	0.120: 
	0.119: 
	0.118: 
	0.117: 
	0.116: 
	0.115: 
	0.114: 
	0.113: 
	0.112: 
	0.111: 
	0.110: 
	0.109: 
	0.108: 
	0.107: 
	0.106: 
	0.105: 
	0.104: 
	0.103: 
	0.102: 
	0.101: 
	0.100: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


