Lecture 25: Overlap-Add

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

@ Review: Circular Convolution
© Fast Fourier Transform
© Overlap-Add

@ Conclusion

Review
°

Outline

@ Review: Circular Convolution

Review
.

Review: Circular convolution

Multiplying the DFT means circular convolution of the
time-domain signals:

ylnl = hln] ® x[n] < Y[k] = H[K]X[K],

Circular convolution (h[n] ® x[n]) is defined like this:

N-1 N—1
hin] @ x[n] = > x[m]h[(n — m)n] = Almx[(n — m)n]
m=0 m=0

Circular convolution is the same as linear convolution if and only if
N>L+M-—1.

Outline

© Fast Fourier Transform

FFT
00000

Computational Complexity: Convolution and DFT

Convolution is an O{N?} operation: each of the N samples of y[n]
is created by adding up N samples of x[m]h[n — m]:

yIn = 3" x{mhln — m]

m

The way we've learned it so far, the DFT is also an O{N?}
operation: each of the N samples of X[k] is created by adding up
N samples of x[n]e/“x":

2mkn

X[kl = x[n]e™"n

n

However. . .

FFT
(o] Jelele]

The Fast Fourier Transform

@ The fast Fourier transform (FFT) is a clever
divide-and-conquer algorithm that computes all of the N
samples of X[k], from x[n], in only N log, N multiplications.

@ It does this by computing all N of the X[k], all at once.

e Multiplications (x[n] x wy p, for some coefficient wy ,) are
grouped together, across different groups of k and n.

@ On average, each of the N samples of X[k] can be computed

using only log, N multiplications, for a total complexity of
Nlog, N.

FFT
[ele] Jlele}

What's the difference between N? and N log, N7?

Consider filtering N = 1024 samples of audio (about 1/40 second)
with a filter, h[n], that is 1024 samples long.

@ Time-domain convolution requires 1024 x 1024 ~ 1,000, 000
multiplications. If a GPU does 40 billion
multiplications/second, then it will take an hour of GPU time
to apply this operation to a 1000-hour audio database.

@ FFT requires 1024 x log, 1024 ~ 10,000 multiplications. If a
GPU does 40 billion multiplications/second, then it will take

36 seconds of GPU time to apply this operation to a
1000-hour audio database.

How is it used?

Suppose we have a 1025-sample h[n], and we want to filter a
one-hour audio (144,000,000 samples). Divide the audio into
frames, x[n], of length M = 1024, zero-pad to
N =L+ M —1=2048, and take their FFTs.

o H[k] = FFT{h[n]}: total cost is trivial, because we only need

to do this once.

o X[k] = FFT{x[n]}: total cost is Nlog N per M samples.

e Y[k] = X[k]H[kK]: total cost is N multiplications per M

samples.

o y[n] = FFT1{Y[K]}: total cost is Nlog N per M samples.
Grand total: N x (2logy N + 1) = 2048 x 23 = 47104
multiplications per 1024 audio samples, or 46 multiplications per
sample.

FFT
[eleele]]

How do we recombine the y[n]?

@ The main topic of today's lecture: how do we recombine the
y[n?
@ Remember: each frame of x[n] was 1024 samples, but after

zero-padding and convolution, each frame of y[n] is 2048
samples.

@ How do we recombine them?

Overlap-Add
Outline

© Overlap-Add

Overlap-Add
®0000

Let's look more closely at what convolution is. Each sample of x[n]
generates an impulse response. Those impulse responses are added
together to make the output.

x[n]

14
0
—1

0 25 50

x[016[n — 0] x[01h[n — 0]
1 2.5
B —{F— oot----m--
7 T T —2.54 T T
0 25 50 0 25 50

y[n] = ix[mlh[n— m]

—2.541

0
(=)bM+]

25 50

Overlap-Add
©0®000

First two lines show the first two frames (input on left, output on
right). Last line shows the total input (left) and output (right).

First input frame, x1[n]

First output frame, yilr
259 5
0.0 11 |' 0f———————————-
—2.5 4 T =51 T
0 50 0 50
Second input frame, x2[n] Second output frame, y;
2.5 5
(Y A ——— — ' ot
—2.5 A . -5 :
0 50 0 50
x[n] total, all frames yI[n] total, all frames
259 5
0.0 -|J || 0fF=———————————-
—2.5 T =51 T
0 50 0 50
n

(=)be(+)

Overlap-Add
©0®00

The Overlap-Add Algorithm

@ Divide x[n] into frames
@ Generate the output from each frame

© Overlap the outputs, and add them together

Overlap-Add
oooe0

The Overlap-Add Algorithm

© Divide x[n] into frames (w[n] is a length-M rectangle).

xe[n] = x[n + tM]w][n]
Xi[k] = FFT{x[n]}

@ Generate the output from each frame

Ye[k] = Xc[k]H[K]
yeln] = FET " {ye[n]}

© Overlap the outputs, and add them together

ylnl =" yeln — tM]

Overlap-Add
ooooe

Try the quiz!

Conclusion
°

Outline

@ Conclusion

Conclusion
.

The Overlap-Add Algorithm

© Divide x[n] into frames (w[n] is a length-M rectangle).

xe[n] = x[n + tM]w][n]
Xi[k] = FFT{x[n]}

@ Generate the output from each frame

Ye[k] = Xc[k]H[K]
yeln] = FET " {ye[n]}

© Overlap the outputs, and add them together

ylnl =" yeln — tM]

	Review: Circular Convolution
	Fast Fourier Transform
	Overlap-Add
	Conclusion

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.255:
	1.254:
	1.253:
	1.252:
	1.251:
	1.250:
	1.249:
	1.248:
	1.247:
	1.246:
	1.245:
	1.244:
	1.243:
	1.242:
	1.241:
	1.240:
	1.239:
	1.238:
	1.237:
	1.236:
	1.235:
	1.234:
	1.233:
	1.232:
	1.231:
	1.230:
	1.229:
	1.228:
	1.227:
	1.226:
	1.225:
	1.224:
	1.223:
	1.222:
	1.221:
	1.220:
	1.219:
	1.218:
	1.217:
	1.216:
	1.215:
	1.214:
	1.213:
	1.212:
	1.211:
	1.210:
	1.209:
	1.208:
	1.207:
	1.206:
	1.205:
	1.204:
	1.203:
	1.202:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

