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Review: Circular convolution

Multiplying the DFT means circular convolution of the
time-domain signals:

ylnl = hln] ® x[n] < Y[k] = H[K]X[K],

Circular convolution (h[n] ® x[n]) is defined like this:

N-1 N—1
hin] @ x[n] = > x[m]h[(n — m)n] = Almx[(n — m)n]
m=0 m=0

Circular convolution is the same as linear convolution if and only if
N>L+M-—1.
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© Fast Fourier Transform
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Computational Complexity: Convolution and DFT

Convolution is an O{N?} operation: each of the N samples of y[n]
is created by adding up N samples of x[m]h[n — m]:

yIn = 3" x{mhln — m]

m

The way we've learned it so far, the DFT is also an O{N?}
operation: each of the N samples of X[k] is created by adding up
N samples of x[n]e/“x":

2mkn

X[kl = x[n]e™"n

n

However. . .
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The Fast Fourier Transform

@ The fast Fourier transform (FFT) is a clever
divide-and-conquer algorithm that computes all of the N
samples of X[k], from x[n], in only N log, N multiplications.

@ It does this by computing all N of the X[k], all at once.

e Multiplications (x[n] x wy p, for some coefficient wy ,) are
grouped together, across different groups of k and n.

@ On average, each of the N samples of X[k] can be computed

using only log, N multiplications, for a total complexity of
Nlog, N.
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What's the difference between N? and N log, N7?

Consider filtering N = 1024 samples of audio (about 1/40 second)
with a filter, h[n], that is 1024 samples long.

@ Time-domain convolution requires 1024 x 1024 ~ 1,000, 000
multiplications. If a GPU does 40 billion
multiplications/second, then it will take an hour of GPU time
to apply this operation to a 1000-hour audio database.

@ FFT requires 1024 x log, 1024 ~ 10,000 multiplications. If a
GPU does 40 billion multiplications/second, then it will take

36 seconds of GPU time to apply this operation to a
1000-hour audio database.



How is it used?

Suppose we have a 1025-sample h[n], and we want to filter a
one-hour audio (144,000,000 samples). Divide the audio into
frames, x[n], of length M = 1024, zero-pad to
N =L+ M —1=2048, and take their FFTs.

o H[k] = FFT{h[n]}: total cost is trivial, because we only need

to do this once.

o X[k] = FFT{x[n]}: total cost is Nlog N per M samples.

e Y[k] = X[k]H[kK]: total cost is N multiplications per M

samples.

o y[n] = FFT1{Y[K]}: total cost is Nlog N per M samples.
Grand total: N x (2logy N + 1) = 2048 x 23 = 47104
multiplications per 1024 audio samples, or 46 multiplications per
sample.
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How do we recombine the y[n]?

@ The main topic of today's lecture: how do we recombine the
y[n?
@ Remember: each frame of x[n] was 1024 samples, but after

zero-padding and convolution, each frame of y[n] is 2048
samples.

@ How do we recombine them?
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Let's look more closely at what convolution is. Each sample of x[n]
generates an impulse response. Those impulse responses are added
together to make the output.

x[n]

14
0
—1

0 25 50

x[016[n — 0] x[01h[n — 0]
1 2.5
B —{F— oot----m--
7 T T —2.54 T T
0 25 50 0 25 50

y[n] = ix[mlh[n— m]

—2.541

0
(=)bM+]

25 50
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First two lines show the first two frames (input on left, output on
right). Last line shows the total input (left) and output (right).

First input frame, x1[n]

First output frame, yilr
259 5
0.0 11 |' 0f———————————-
—2.5 4 T =51 T
0 50 0 50
Second input frame, x2[n] Second output frame, y;
2.5 5
(Y A ——— — ' ot
—2.5 A . -5 :
0 50 0 50
x[n] total, all frames yI[n] total, all frames
259 5
0.0 -|J || 0fF=———————————-
—2.5 T =51 T
0 50 0 50
n

(=)be(+)
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The Overlap-Add Algorithm

@ Divide x[n] into frames
@ Generate the output from each frame

© Overlap the outputs, and add them together
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The Overlap-Add Algorithm

© Divide x[n] into frames (w[n] is a length-M rectangle).

xe[n] = x[n + tM]w][n]
Xi[k] = FFT{x[n]}

@ Generate the output from each frame

Ye[k] = Xc[k]H[K]
yeln] = FET " {ye[n]}

© Overlap the outputs, and add them together

ylnl =" yeln — tM]
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Try the quiz!
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The Overlap-Add Algorithm

© Divide x[n] into frames (w[n] is a length-M rectangle).

xe[n] = x[n + tM]w][n]
Xi[k] = FFT{x[n]}

@ Generate the output from each frame

Ye[k] = Xc[k]H[K]
yeln] = FET " {ye[n]}

© Overlap the outputs, and add them together

ylnl =" yeln — tM]
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