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Review: DTFT

The DTFT (discrete time Fourier transform) of any signal is X (ω),
given by

X (ω) =
∞∑

n=−∞
x [n]e−jωn

x [n] =
1

2π

∫ π

−π
X (ω)e jωndω

Particular useful examples include:

f [n] = δ[n]↔ F (ω) = 1

g [n] = δ[n − n0]↔ G (ω) = e−jωn0
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Properties of the DTFT

Properties worth knowing include:

0 Periodicity: X (ω + 2π) = X (ω)

1 Linearity:

z [n] = ax [n] + by [n]↔ Z (ω) = aX (ω) + bY (ω)

2 Time Shift: x [n − n0]↔ e−jωn0X (ω)

3 Frequency Shift: e jω0nx [n]↔ X (ω − ω0)

4 Filtering is Convolution:

y [n] = h[n] ∗ x [n]↔ Y (ω) = H(ω)X (ω)
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How can we compute the DTFT?

The DTFT has a big problem: it requires an infinite-length
summation, therefore you can’t compute it on a computer.

The DFT solves this problem by assuming a finite length
signal.

“N equations in N unknowns:” if there are N samples in the
time domain (x [n], 0 ≤ n ≤ N − 1), then there are only N
independent samples in the frequency domain
(X (ωk), 0 ≤ k ≤ N − 1).
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Finite-length signal

First, assume that x [n] is nonzero only for 0 ≤ n ≤ N − 1. Then
the DTFT can be computed as:

X (ω) =
N−1∑
n=0

x [n]e−jωn
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N equations in N unknowns

Since there are only N samples in the time domain, there are also
only N independent samples in the frequency domain:

X [k] = X (ωk) =
N−1∑
n=0

x [n]e−jωkn =
N−1∑
n=0

x [n]e−j
2πkn
N

where

ωk =
2πk

N
, 0 ≤ k ≤ N − 1
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Discrete Fourier Transform

Putting it all together, we get the formula for the DFT:

X [k] =
N−1∑
n=0

x [n]e−j
2πkn
N
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Inverse Discrete Fourier Transform

X [k] =
N−1∑
n=0

x [n]e−j
2πkn
N

Using orthogonality, we can also show that

x [n] =
1

N

N−1∑
k=0

X [k]e j
2πkn
N
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Example

Consider the signal

x [n] =


1 n=0,1

0 n=2,3

undefined otherwise
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Example DFT

X [k] =
3∑

n=0

x [n]e−j
2πkn
4

= 1 + e−j
2πk
4

=


2 k = 0

1− j k = 1

0 k = 2

1 + j k = 3
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Example IDFT

X [k] = [2, (1− j), 0, (1 + j)]

x [n] =
1

4

3∑
k=0

X [k]e j
2πkn
4

=
1

4

(
2 + (1− j)e j

2πn
4 + (1 + j)e j

6πn
4

)
=

1

4
(2 + (1− j)jn + (1 + j)(−j)n)

=

{
1 n = 0, 1

0 n = 2, 3
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Shifted Delta Function

In many cases, we can find the DFT directly from the DTFT. For
example:

h[n] = δ[n − n0] ↔ H(ω) = e−jωn0

If and only if the signal is less than length N, we can just plug
in ωk = 2πk

N :

h[n] = δ[n − n0] ↔ H[k] =

{
e−j

2πkn0
N 0 ≤ n0 ≤ N − 1

undefined otherwise
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Quiz

Go to the course webpage, and try today’s quiz!
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Cosine

Finding the DFT of a cosine is possible, but harder than you might
think. Consider:

x [n] = cos(ω0n)

This signal violates the first requirement of a DFT:

x [n] must be finite length.
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Cosine

We can make x [n] finite-length by windowing it, like this:

x [n] = cos(ω0n)w [n],

where w [n] is the rectangular window,

w [n] =

{
1 0 ≤ n ≤ N − 1

0 otherwise
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Cosine

Now that x [n] is finite length, we can just take its DTFT, and then
sample at ωk = 2πk

N :

X [k] = X (ωk) =
N−1∑
n=0

x [n]e−jωkn
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Linearity and Frequency-Shift Properties of the DTFT

But how do we solve this equation?

X (ωk) =
N−1∑
n=0

cos(ω0n)w [n]e−jωkn

The answer is, surprisingly, that we can use two properties of the
DTFT:

Linearity: x1[n] + x2[n] ↔ X1(ω) + X2(ω)

Frequency Shift: e jω0nz [n] ↔ Z (ω − ω0)
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Linearity and Frequency-Shift Properties of the DTFT

Linearity:

cos(ω0n)w [n] =
1

2
e jω0nw [n] +

1

2
e−jω0nw [n]

Frequency Shift:

e jω0nw [n]↔W (ω − ω0)

Putting them together, we have that

cos(ω0n)w [n] ↔ 1

2
W (ω − ω0) +

1

2
W (ω + ω0)
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DFT of a Cosine

Putting it together,

x [n] = cos(ω0n)w [n] ↔ X (ωk) =
1

2
W (ωk −ω0) +

1

2
W (ωk +ω0)

where W (ω) is the Dirichlet form:

W (omega) = e−jω
N−1
2

sin(ωN/2)

sin(ω/2)
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DFT of a Cosine

Here’s the DFT of

x [n] = cos

(
2π20.3

N
n

)
w [n]
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DFT of a Cosine

Remember that W (ω) = 0 whenever ω is a multiple of 2π
N . But

the DFT only samples at multiples of 2π
N ! So if ω0 is also a

multiple of 2π
N , then the DFT of a cosine is just a pair of impulses

in frequency:
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Periodic in Frequency

Just as X (ω) is periodic with period 2π, in the same way, X [k] is
periodic with period N:

X [k + N] =
∑
n

x [n]e−j
2π(k+N)n

N

=
∑
n

x [n]e−j
2πkn
N e−j

2πNn
N

=
∑
n

x [n]e−j
2πkn
N

= X [k]
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Periodic in Time

The inverse DFT is also periodic in time! x [n] is undefined outside
0 ≤ n ≤ N − 1, but if we accidentally try to compute x [n] at any
other times, we end up with:

x [n + N] =
1

N

∑
k

X [k]e j
2πk(n+N)

N

=
1

N

∑
k

X [k]e j
2πkn
N e j

2πkN
N

=
1

N

∑
k

X [k]e j
2πkn
N

= x [n]



DTFT DFT Example Delta Cosine Properties of DFT Summary Written

Linearity

ax1[n] + bx2[n] ↔ aX1[k] + bX2[k]
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Samples of the DTFT

If x [n] is finite length, with length of at most N samples, then

X [k] = X (ωk), ωk =
2πk

N
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Conjugate Symmetry of the DTFT

Here’s a property of the DTFT that we didn’t talk about much.
Suppose that x [n] is real. Then

X (−ω) =
∞∑

n=−∞
x [n]e−j(−ω)n

=
∞∑

n=−∞
x [n]e jωn

=

( ∞∑
n=−∞

x [n]e−jωn

)∗
= X ∗(ω)
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Conjugate Symmetry of the DFT

X (ω) = X ∗(−ω)

Remember that the DFT, X [k], is just the samples of the DTFT,
sampled at ωk = 2πk

N . So that means that conjugate symmetry
also applies to the DFT:

X [k] = X ∗[−k]

But remember that the DFT is periodic with a period of N, so

X [k] = X ∗[−k] = X ∗[N − k]
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Frequency Shift

The frequency shift property of the DTFT also applies to the DFT:

w [n]e jω0n ↔ W (ω − ω0)

If ω = 2πk
N , and if ω0 = 2πk0

N , then we get

w [n]e j
2πk0n

N ↔ W [k − k0]
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Time Shift

The time shift property of the DTFT was

x [n − n0] ↔ e jωn0X (ω)

The same thing also applies to the DFT, except that the DFT is
finite in time. Therefore we have to use what’s called a “circular
shift:”

x [((n − n0))N ] ↔ e−j
2πkn0

N X [k]

where ((n − n0))N means “n − n0, modulo N.” We’ll talk more
about what that means in the next lecture.
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DFT Examples

1

x [n] = [1, 1, 0, 0] ↔ X [k] = [2, 1− j , 0, 1 + j ]

2

x [n] = δ[n − n0] ↔ X [k] =

{
e−j

2πkn0
N 0 ≤ n0 ≤ N − 1

undefined otherwise

3

x [n] = w [n] cos(ω0n)

↔ X [k] =
1

2
W

[
k − Nω0

2π

]
+

1

2
W

[
k +

Nω0

2π

]
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DFT Properties

1 Periodic in Time and Frequency:

x [n] = x [n + N], X [k] = X [k + N]

2 Linearity:

ax1[n] + bx2[n] ↔ aX1[k] + bX2[k]

3 Samples of the DTFT: if x [n] has length at most N
samples, then

X [k] = X (ωk), ωk =
2πk

N

4 Time & Frequency Shift:

x [n]e j
2πk0n

N ↔ X [k − k0]

x [((n − n0))N ] ↔ X [k]e−j
2πkn0

N
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Written Example

Show that the signal x [n] = δ[n − n0] obeys the conjugate
symmetry properties of both the DFT and DTFT.
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