

Lecture 23: Discrete Fourier Transform

Mark Hasegawa-Johnson

ECE 401: Signal and Image Analysis

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

- [Example: Shifted Delta Function](#page-15-0)
- [Example: Cosine](#page-18-0)
- [Properties of the DFT](#page-27-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Review: DTFT](#page-2-0)

[DFT](#page-5-0)

- [Example](#page-11-0)
- [Example: Shifted Delta Function](#page-15-0)
- [Example: Cosine](#page-18-0)
- [Properties of the DFT](#page-27-0)
- [Summary](#page-36-0)
- [Written Example](#page-39-0)

The DTFT (discrete time Fourier transform) of any signal is $X(\omega)$, given by

$$
X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}
$$

$$
x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega
$$

Particular useful examples include:

$$
f[n] = \delta[n] \leftrightarrow F(\omega) = 1
$$

$$
g[n] = \delta[n - n_0] \leftrightarrow G(\omega) = e^{-j\omega n_0}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[DTFT](#page-2-0) [DFT](#page-5-0) [Example](#page-11-0) [Delta](#page-15-0) [Cosine](#page-18-0) [Properties of DFT](#page-27-0) [Summary](#page-36-0) [Written](#page-39-0) $\circ \circ \bullet$ 000000000 Properties of the DTFT

Properties worth knowing include:

O Periodicity: $X(\omega + 2\pi) = X(\omega)$

1 Linearity:

$$
z[n] = ax[n] + by[n] \leftrightarrow Z(\omega) = aX(\omega) + bY(\omega)
$$

- ? Time Shift: $x[n-n_0] \leftrightarrow e^{-j\omega n_0}X(\omega)$
- 3 Frequency Shift: $e^{j\omega_0 n} x[n] \leftrightarrow X(\omega-\omega_0)$

4 Filtering is Convolution:

$$
y[n] = h[n] * x[n] \leftrightarrow Y(\omega) = H(\omega)X(\omega)
$$

KORK EXTERNE PROVIDE

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Review: DTFT](#page-2-0)

[Example: Shifted Delta Function](#page-15-0)

[Example: Cosine](#page-18-0)

[Properties of the DFT](#page-27-0)

[Summary](#page-36-0)

[DTFT](#page-2-0) [DFT](#page-5-0) [Example](#page-11-0) [Delta](#page-15-0) [Cosine](#page-18-0) [Properties of DFT](#page-27-0) [Summary](#page-36-0) [Written](#page-39-0) 000 000 000000000 000000000 000 \circ How can we compute the DTFT?

- The DTFT has a big problem: it requires an infinite-length summation, therefore you can't compute it on a computer.
- The DFT solves this problem by assuming a **finite length** signal.
- \bullet "N equations in N unknowns:" if there are N samples in the time domain $(x[n], 0 \le n \le N-1)$, then there are only N independent samples in the frequency domain $(X(\omega_k), 0 \leq k \leq N-1).$

KORKAR KERKER SAGA

First, assume that $x[n]$ is nonzero only for $0 \le n \le N - 1$. Then the DTFT can be computed as:

$$
X(\omega)=\sum_{n=0}^{N-1}x[n]e^{-j\omega n}
$$

Kロトメ部トメミトメミト ミニのQC

Since there are only N samples in the time domain, there are also only N independent samples in the frequency domain:

$$
X[k] = X(\omega_k) = \sum_{n=0}^{N-1} x[n]e^{-j\omega_k n} = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}
$$

where

$$
\omega_k=\frac{2\pi k}{N}, \ \ 0\leq k\leq N-1
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Putting it all together, we get the formula for the DFT:

$$
X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}
$$

KOKK@KKEKKEK E 1990

[DTFT](#page-2-0) [DFT](#page-5-0) [Example](#page-11-0) [Delta](#page-15-0) [Cosine](#page-18-0) [Properties of DFT](#page-27-0) [Summary](#page-36-0) [Written](#page-39-0) Inverse Discrete Fourier Transform

$$
X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi kn}{N}}
$$

Using orthogonality, we can also show that

$$
x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi k n}{N}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Review: DTFT](#page-2-0)

[DFT](#page-5-0)

[Example](#page-11-0)

[Example: Shifted Delta Function](#page-15-0)

- [Example: Cosine](#page-18-0)
- [Properties of the DFT](#page-27-0)
- [Summary](#page-36-0)
- [Written Example](#page-39-0)

Consider the signal

$$
x[n] = \begin{cases} 1 & n=0,1 \\ 0 & n=2,3 \\ \text{undefined} & \text{otherwise} \end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

$$
X[k] = \sum_{n=0}^{3} x[n]e^{-j\frac{2\pi k n}{4}}
$$

= 1 + e^{-j\frac{2\pi k}{4}}
=
$$
\begin{cases} 2 & k = 0\\ 1 - j & k = 1\\ 0 & k = 2\\ 1 + j & k = 3 \end{cases}
$$

K ロ K K d K K B K K B K X A K K K G K C K

$$
X[k] = [2, (1-j), 0, (1+j)]
$$

$$
x[n] = \frac{1}{4} \sum_{k=0}^{3} X[k] e^{j\frac{2\pi k n}{4}}
$$

= $\frac{1}{4} (2 + (1 - j)e^{j\frac{2\pi n}{4}} + (1 + j)e^{j\frac{6\pi n}{4}})$
= $\frac{1}{4} (2 + (1 - j)j^{n} + (1 + j)(-j)^{n})$
= $\begin{cases} 1 & n = 0, 1 \\ 0 & n = 2, 3 \end{cases}$

Kロト K個 K K ミト K ミト 「 ミー の R (^

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Review: DTFT](#page-2-0)

[Example](#page-11-0)

[Example: Shifted Delta Function](#page-15-0)

- [Example: Cosine](#page-18-0)
- [Properties of the DFT](#page-27-0)
- [Summary](#page-36-0)
- [Written Example](#page-39-0)

[DTFT](#page-2-0) [DFT](#page-5-0) [Example](#page-11-0) [Delta](#page-15-0) [Cosine](#page-18-0) [Properties of DFT](#page-27-0) [Summary](#page-36-0) [Written](#page-39-0) Shifted Delta Function

In many cases, we can find the DFT directly from the DTFT. For example:

$$
h[n] = \delta[n - n_0] \leftrightarrow H(\omega) = e^{-j\omega n_0}
$$

If and only if the signal is less than length N , we can just plug in $\omega_k = \frac{2\pi k}{N}$ $\frac{\pi k}{N}$:

$$
h[n] = \delta[n - n_0] \quad \leftrightarrow \quad H[k] = \begin{cases} e^{-j\frac{2\pi k n_0}{N}} & 0 \le n_0 \le N - 1 \\ \text{undefined} & \text{otherwise} \end{cases}
$$

KORK ERKER ADAM ADA

Go to the course webpage, and try today's quiz!

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Review: DTFT](#page-2-0)

[Example](#page-11-0)

[Example: Shifted Delta Function](#page-15-0)

[Example: Cosine](#page-18-0)

[Properties of the DFT](#page-27-0)

[Summary](#page-36-0)

[Written Example](#page-39-0)

Finding the DFT of a cosine is possible, but harder than you might think. Consider:

$$
x[n] = \cos(\omega_0 n)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

This signal violates the first requirement of a DFT:

 \bullet x[n] must be finite length.

We can make $x[n]$ finite-length by windowing it, like this:

 $x[n] = \cos(\omega_0 n) w[n],$

where $w[n]$ is the rectangular window,

$$
w[n] = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Now that $x[n]$ is finite length, we can just take its DTFT, and then sample at $\omega_k=\frac{2\pi k}{N}$ $\frac{\pi}{K}$:

$$
X[k] = X(\omega_k) = \sum_{n=0}^{N-1} x[n]e^{-j\omega_k n}
$$

But how do we solve this equation?

$$
X(\omega_k) = \sum_{n=0}^{N-1} \cos(\omega_0 n) w[n] e^{-j\omega_k n}
$$

The answer is, surprisingly, that we can use two properties of the DTFT:

KORK EXTERNE PROVIDE

- Linearity: $x_1[n] + x_2[n] \leftrightarrow X_1(\omega) + X_2(\omega)$
- Frequency Shift: $e^{j\omega_0 n} z[n] \leftrightarrow Z(\omega \omega_0)$

[DTFT](#page-2-0) [DFT](#page-5-0) [Example](#page-11-0) [Delta](#page-15-0) [Cosine](#page-18-0) [Properties of DFT](#page-27-0) [Summary](#page-36-0) [Written](#page-39-0) Linearity and Frequency-Shift Properties of the DTFT

Linearity:

$$
\cos(\omega_0 n)w[n] = \frac{1}{2}e^{j\omega_0 n}w[n] + \frac{1}{2}e^{-j\omega_0 n}w[n]
$$

• Frequency Shift:

$$
e^{j\omega_0 n} w[n] \leftrightarrow W(\omega - \omega_0)
$$

Putting them together, we have that

$$
\cos(\omega_0 n) w[n] \quad \leftrightarrow \quad \frac{1}{2} W(\omega - \omega_0) + \frac{1}{2} W(\omega + \omega_0)
$$

KORK EXTERNE PROVIDE

Putting it together,

$$
x[n] = \cos(\omega_0 n) w[n] \leftrightarrow X(\omega_k) = \frac{1}{2} W(\omega_k - \omega_0) + \frac{1}{2} W(\omega_k + \omega_0)
$$

where $W(\omega)$ is the Dirichlet form:

$$
W(\text{omega}) = e^{-j\omega \frac{N-1}{2}} \frac{\sin(\omega N/2)}{\sin(\omega/2)}
$$

Here's the DFT of

$$
x[n] = \cos\left(\frac{2\pi 20.3}{N}n\right) w[n]
$$

[DTFT](#page-2-0) [DFT](#page-5-0) [Example](#page-11-0) [Delta](#page-15-0) [Cosine](#page-18-0) [Properties of DFT](#page-27-0) [Summary](#page-36-0) [Written](#page-39-0) 000 000 00000000 \circ DFT of a Cosine

Remember that $W(\omega) = 0$ whenever ω is a multiple of $\frac{2\pi}{N}$. But the DFT only samples at multiples of $\frac{2\pi}{N}$! So if ω_0 is also a multiple of $\frac{2\pi}{N}$, then the DFT of a cosine is just a pair of impulses in frequency:

 Ω

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- [Review: DTFT](#page-2-0)
- [DFT](#page-5-0)
- [Example](#page-11-0)
- [Example: Shifted Delta Function](#page-15-0)
- [Example: Cosine](#page-18-0)
- [Properties of the DFT](#page-27-0)
- [Summary](#page-36-0)
- [Written Example](#page-39-0)

Just as $X(\omega)$ is periodic with period 2π , in the same way, $X[k]$ is periodic with period N:

$$
X[k+N] = \sum_{n} x[n]e^{-j\frac{2\pi(k+N)n}{N}}
$$

$$
= \sum_{n} x[n]e^{-j\frac{2\pi kn}{N}}e^{-j\frac{2\pi Nn}{N}}
$$

$$
= \sum_{n} x[n]e^{-j\frac{2\pi kn}{N}}
$$

$$
= X[k]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

The inverse DFT is also periodic in time! $x[n]$ is undefined outside $0 \le n \le N - 1$, but if we accidentally try to compute $x[n]$ at any other times, we end up with:

$$
x[n+N] = \frac{1}{N} \sum_{k} X[k] e^{j\frac{2\pi k(n+N)}{N}}
$$

$$
= \frac{1}{N} \sum_{k} X[k] e^{j\frac{2\pi k n}{N}} e^{j\frac{2\pi k N}{N}}
$$

$$
= \frac{1}{N} \sum_{k} X[k] e^{j\frac{2\pi k n}{N}}
$$

$$
= x[n]
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$ax_1[n] + bx_2[n] \leftrightarrow aX_1[k] + bX_2[k]$

K ロ K K d K K B K K B K X B K Y Q Q Q

If $x[n]$ is finite length, with length of at most N samples, then

$$
X[k] = X(\omega_k), \ \ \omega_k = \frac{2\pi k}{N}
$$

Here's a property of the DTFT that we didn't talk about much. Suppose that $x[n]$ is real. Then

$$
X(-\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j(-\omega)n}
$$

=
$$
\sum_{n=-\infty}^{\infty} x[n]e^{j\omega n}
$$

=
$$
\left(\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}\right)^*
$$

=
$$
X^*(\omega)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[DTFT](#page-2-0) [DFT](#page-5-0) [Example](#page-11-0) [Delta](#page-15-0) [Cosine](#page-18-0) [Properties of DFT](#page-27-0) [Summary](#page-36-0) [Written](#page-39-0) 000 000 000000000 Conjugate Symmetry of the DFT

$$
X(\omega)=X^*(-\omega)
$$

Remember that the DFT, $X[k]$, is just the samples of the DTFT, sampled at $\omega_k=\frac{2\pi k}{N}$ $\frac{\pi\kappa}{N}$. So that means that conjugate symmetry also applies to the DFT:

$$
X[k] = X^*[-k]
$$

But remember that the DFT is periodic with a period of N, so

$$
X[k] = X^*[-k] = X^*[N-k]
$$

KORKARYKERKER POLO

The frequency shift property of the DTFT also applies to the DFT:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$$
w[n]e^{j\omega_0 n} \leftrightarrow W(\omega - \omega_0)
$$

If $\omega = \frac{2\pi k}{N}$, and if $\omega_0 = \frac{2\pi k_0}{N}$, then we get

$$
w[n]e^{j\frac{2\pi k_0 n}{N}} \leftrightarrow W[k - k_0]
$$

The time shift property of the DTFT was

$$
x[n - n_0] \leftrightarrow e^{j\omega n_0} X(\omega)
$$

The same thing also applies to the DFT, except that the DFT is finite in time. Therefore we have to use what's called a "circular shift:"

$$
\times\left[((n-n_0))_N\right] \quad \leftrightarrow \quad e^{-j\frac{2\pi k n_0}{N}}X[k]
$$

KORKARYKERKER POLO

where $((n - n_0))_N$ means " $n - n_0$, modulo N." We'll talk more about what that means in the next lecture.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Review: DTFT](#page-2-0)

[Example](#page-11-0)

[Example: Shifted Delta Function](#page-15-0)

[Example: Cosine](#page-18-0)

[Properties of the DFT](#page-27-0)

[Summary](#page-36-0)

 \bullet

2

3

 $x[n] = [1, 1, 0, 0] \leftrightarrow X[k] = [2, 1 - j, 0, 1 + j]$

$$
x[n] = \delta[n - n_0] \quad \leftrightarrow \quad X[k] = \begin{cases} e^{-j\frac{2\pi kn_0}{N}} & 0 \le n_0 \le N - 1 \\ \text{undefined} & \text{otherwise} \end{cases}
$$

$$
x[n] = w[n] \cos(\omega_0 n)
$$

$$
\leftrightarrow X[k] = \frac{1}{2}W \left[k - \frac{N\omega_0}{2\pi} \right] + \frac{1}{2}W \left[k + \frac{N\omega_0}{2\pi} \right]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

[DTFT](#page-2-0) [DFT](#page-5-0) [Example](#page-11-0) [Delta](#page-15-0) [Cosine](#page-18-0) [Properties of DFT](#page-27-0) [Summary](#page-36-0) [Written](#page-39-0) DFT Properties

1 Periodic in Time and Frequency:

$$
x[n] = x[n+N], \quad X[k] = X[k+N]
$$

2 Linearity:

 $ax_1[n] + bx_2[n] \leftrightarrow aX_1[k] + bX_2[k]$

3 Samples of the DTFT: if $x[n]$ has length at most N samples, then

$$
X[k] = X(\omega_k), \quad \omega_k = \frac{2\pi k}{N}
$$

4 Time & Frequency Shift:

$$
x[n]e^{j\frac{2\pi k_0 n}{N}} \leftrightarrow X[k-k_0]
$$

$$
x[((n-n_0))_N] \leftrightarrow X[k]e^{-j\frac{2\pi k n_0}{N}}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- [Review: DTFT](#page-2-0)
- [DFT](#page-5-0)
- [Example](#page-11-0)
- [Example: Shifted Delta Function](#page-15-0)
- [Example: Cosine](#page-18-0)
- [Properties of the DFT](#page-27-0)
- [Summary](#page-36-0)

Show that the signal $x[n] = \delta[n - n_0]$ obeys the conjugate symmetry properties of both the DFT and DTFT.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @